Skip to main content

Statistical Methods Inspired by Challenges in Pediatric Cancer Multi-omics

  • Protocol
  • First Online:
Statistical Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2629))

  • 1857 Accesses

Abstract

Pediatric cancer multi-omics is a uniquely rewarding and challenging domain of biomedical research. Public generosity bestows an abundance of resources for the study of extremely rare diseases; this unique dynamic creates a research environment in which problems with high-dimension and low sample size are commonplace. Here, we present a few statistical methods that we have developed for our research setting and believe will prove valuable in other biomedical research settings as well. The genomic random interval (GRIN) method evaluates the loci and frequency of genomic abnormalities in the DNA of tumors to identify genes that may drive the development of malignancies. The association of lesions with expression (ALEX) method evaluates the impact of genomic abnormalities on the RNA transcription of nearby genes to inform the formulation of biological hypotheses on molecular mechanisms. The projection onto the most interesting statistical evidence (PROMISE) method identifies omic features that consistently associate with better prognosis or consistently associate with worse prognosis across multiple measures of clinical outcome. We have shown that these methods are statistically robust and powerful in the statistical bioinformatic literature and successfully used these methods to make fundamental biological discoveries that have formed the scientific rationale for ongoing clinical trials. We describe these methods and illustrate their application on a publicly available T-cell acute lymphoblastic leukemia (T-ALL) data set. A companion github site (https://github.com/stjude/TALL-example) provides the R code and data necessary to recapitulate the example data analyses of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu Y, Easton J, Shao Y, Maciaszek J, Wang Z, Wilkinson MR, McCastlain K, Edmonson M, Pounds SB, Shi L, Zhou X, Ma X, Sioson E, Li Y, Rusch M, Gupta P, Pei D, Cheng C, Smith MA, Auvil JG, Gerhard DS, Relling MV, Winick NJ, Carroll AJ, Heerema NA, Raetz E, Devidas M, Willman CL, Harvey RC, Carroll WL, Dunsmore KP, Winter SS, Wood BL, Sorrentino BP, Downing JR, Loh ML, Hunger SP, Zhang J, Mullighan CG (2017) The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet 49(8):1211–1218. https://doi.org/10.1038/ng.3909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pounds S, Cheng C, Li S, Liu Z, Zhang J, Mullighan C (2013) A genomic random interval model for statistical analysis of genomic lesion data. Bioinformatics 29(17):2088–2095. https://doi.org/10.1093/bioinformatics/btt372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pounds S, Cheng C, Cao X, Crews KR, Plunkett W, Gandhi V, Rubnitz J, Ribeiro RC, Downing JR, Lamba J (2009) PROMISE: a tool to identify genomic features with a specific biologically interesting pattern of associations with multiple endpoint variables. Bioinformatics 25(16):2013–2019. https://doi.org/10.1093/bioinformatics/btp357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Winter SS, Dunsmore KP, Devidas M, Eisenberg N, Asselin BL, Wood BL, Leonard Rn MS, Murphy J, Gastier-Foster JM, Carroll AJ, Heerema NA, Loh ML, Raetz EA, Winick NJ, Carroll WL, Hunger SP (2015) Safe integration of nelarabine into intensive chemotherapy in newly diagnosed T-cell acute lymphoblastic leukemia: Children’s Oncology Group Study AALL0434. Pediatr Blood Cancer 62(7):1176–1183. https://doi.org/10.1002/pbc.25470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Storey JD (2002) A direct approach to false discovery rates. J R Statist Soc B 64:479–498

    Article  Google Scholar 

  6. Pounds S, Cheng C (2006) Robust estimation of the false discovery rate. Bioinformatics 22(16):1979–1987. https://doi.org/10.1093/bioinformatics/btl328

    Article  CAS  PubMed  Google Scholar 

  7. Berger GCaRL (2021) Statistical inference. Cengage Learning

    Google Scholar 

  8. Wendorff AA, Quinn SA, Rashkovan M, Madubata CJ, Ambesi-Impiombato A, Litzow MR, Tallman MS, Paietta E, Paganin M, Basso G, Gastier-Foster JM, Loh ML, Rabadan R, Van Vlierberghe P, Ferrando AA (2019) Phf6 loss enhances HSC self-renewal driving tumor initiation and leukemia stem cell activity in T-ALL. Cancer Discov 9(3):436–451. https://doi.org/10.1158/2159-8290.CD-18-1005

    Article  CAS  PubMed  Google Scholar 

  9. Pounds S, Cao X, Cheng C, Yang JJ, Campana D, Pui CH, Evans WE, Relling MV (2011) Integrated analysis of pharmacologic, clinical and SNP microarray data using Projection Onto the Most Interesting Statistical Evidence with Adaptive Permutation Testing. Int J Data Min Bioinform 5(2):143–157. https://doi.org/10.1504/IJDMB.2011.039174

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jung SH, Owzar K, George SL (2005) A multiple testing procedure to associate gene expression levels with survival. Stat Med 24(20):3077–3088. https://doi.org/10.1002/sim.2179

    Article  PubMed  Google Scholar 

  11. O’Brien PC (1978) A nonparametric test for association with censored data. Biometrics 34(2):243–250

    Article  PubMed  Google Scholar 

  12. Cao X, Crews KR, Downing J, Lamba J, Pounds SB (2016) CC-PROMISE effectively integrates two forms of molecular data with multiple biologically related endpoints. BMC Bioinf 17(Suppl 13):382. https://doi.org/10.1186/s12859-016-1217-0

    Article  CAS  Google Scholar 

  13. Lamba JK, Cao X, Raimondi SC, Rafiee R, Downing JR, Lei S, Gruber T, Ribeiro RC, Rubnitz JE, Pounds SB (2018) Integrated epigenetic and genetic analysis identifies markers of prognostic significance in pediatric acute myeloid leukemia. Oncotarget 9(42):26711–26723. https://doi.org/10.18632/oncotarget.25475

  14. Emmanuelle, Clappier Wendy, Cuccuini Anna, Kalota Antoine, Crinquette Jean-Michel, Cayuela Willem A., Dik Anton W., Langerak Bertrand, Montpellier Bertrand, Nadel Pierre, Walrafen Olivier, Delattre Alain, Aurias Thierry, Leblanc Hervé, Dombret Alan M., Gewirtz André, Baruchel François, Sigaux Jean, Soulier (2007) The C-MYB locus is involved in chromosomal translocation and genomic duplications in human T-cell acute leukemia (T-ALL) the translocation defining a new T-ALL subtype in very young children. Blood 110(4):1251–1261 https://doi.org/10.1182/blood-2006-12-064683

  15. Xiaoyan, Jiang Yun, Zhao Wing-Yiu, Chan Suzanne, Vercauteren Emily, Pang Sean, Kennedy Frank, Nicolini Allen, Eaves Connie, Eaves (2004) Deregulated expression in Ph+ human leukemias of AHI-1 a gene activated by insertional mutagenesis in mouse models of leukemia. Blood 103(10):3897–3904 https://doi.org/10.1182/blood-2003-11-4026

  16. X, Liu K, Rothe R, Yen C, Fruhstorfer T, Maetzig M, Chen D L, Forrest R K, Humphries X, Jiang (2017) A novel AHI-1–BCR-ABL–DNM2 complex regulates leukemic properties of primitive CML cells through enhanced cellular endocytosis and ROS-mediated autophagy. Leukemia 31(11):2376–2387 https://doi.org/10.1038/leu.2017.108

  17. Hiroshi, Fujiwara Naomichi, Arima Tomoko, Hashimoto-Tamaoki Kakushi, Matsushita Hideo, Ohtsubo Kosei, Arimura Shiroh, Hidaka Chuwa, Tei (1999) Alteration of p16 (CDKN2) gene is associated with interleukin-2–induced tumor cell growth in adult T-cell leukemia. Experimental Hematology 27(6): 1004–1009 S0301472X99000351 https://doi.org/10.1016/S0301-472X(99)00035-1

  18. Sabine, Strehl Karin, Nebral Margit, König Jochen, Harbott Herbert, Strobl Richard, Ratei Stephanie, Struski Bella, Bielorai Michel, Lessard Martin, Zimmermann Oskar A., Haas Shai, Izraeli (2008) (2008) Clinical Cancer Research 14(4):977–983 https://doi.org/10.1158/1078-0432.CCR-07-4022

  19. S. M. N., Onnebo P., Rasighaemi J., Kumar C., Liongue A. C., Ward (2012) (2012) Alternative TEL-JAK2 fusions associated with T-cell acute lymphoblastic leukemia and atypical chronic myelogenous leukemia dissected in zebrafish. Haematologica 97(12):1895–1903 haematol.2012.064659 https://doi.org/10.3324/haematol.2012.064659

  20. Stefan, Nagel Letizia, Venturini Corinna, Meyer Maren, Kaufmann Michaela, Scherr Hans G., Drexler Roderick A.F., MacLeod (2010) Multiple mechanisms induce ectopic expression of LYL1 in subsets of T-ALL cell lines. Leukemia Research 34(4):521–528 S0145212609002975 https://doi.org/10.1016/j.leukres.2009.06.020

  21. AHyun, Choi Anuradha, Illendula John A., Pulikkan Justine E., Roderick Jessica, Tesell Jun, Yu Nicole, Hermance Lihua Julie, Zhu Lucio H., Castilla John H., Bushweller Michelle A., Kelliher (2017) RUNX1 is required for oncogenic Myb and Myc enhancer activity in T-cell acute lymphoblastic leukemia. Blood 130(15):1722–1733 https://doi.org/10.1182/blood-2017-03-775536

  22. Idoya, Lahortiga Kim, De Keersmaecker Pieter, Van Vlierberghe Carlos, Graux Barbara, Cauwelier Frederic, Lambert Nicole, Mentens H Berna, Beverloo Rob, Pieters Frank, Speleman Maria D, Odero Marijke, Bauters Guy, Froyen Peter, Marynen Peter, Vandenberghe Iwona, Wlodarska Jules P P, Meijerink Jan, Cools (2007) Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia. Nature Genetics 39(5):593–595 https://doi.org/10.1038/ng2025

  23. Yong-Mei, Zhu Wei-Li, Zhao Jian-Fei, Fu Jing-Yi, Shi Qin, Pan Jiong, Hu Xiao-Dong, Gao Bing, Chen Jun-Min, Li Shu-Min, Xiong Long-Jun, Gu Jing-Yi, Tang Hui, Liang Hui, Jiang Yong-Quan, Xue Zhi-Xiang, Shen Zhu, Chen Sai-Juan, Chen (2006) (2006) Clinical Cancer Research 12(10):3043–3049 https://doi.org/10.1158/1078-0432.CCR-05-2832

  24. Agnieszka A., Wendorff S. Aidan, Quinn Marissa, Rashkovan Chioma J., Madubata Alberto, Ambesi-Impiombato Mark R., Litzow Martin S., Tallman Elisabeth, Paietta Maddalena, Paganin Giuseppe, Basso Julie M., Gastier-Foster Mignon L., Loh Raul, Rabadan Pieter, Van Vlierberghe Adolfo A., Ferrando (2019) (2019) Cancer Discovery 9(3):436–451 https://doi.org/10.1158/2159-8290.CD-18-1005

  25. Alejandro, Gutierrez Takaomi, Sanda Ruta, Grebliunaite Arkaitz, Carracedo Leonardo, Salmena Yebin, Ahn Suzanne, Dahlberg Donna, Neuberg Lisa A., Moreau Stuart S., Winter Richard, Larson Jianhua, Zhang Alexei, Protopopov Lynda, Chin Pier Paolo, Pandolfi Lewis B., Silverman Stephen P., Hunger Stephen E., Sallan A. Thomas, Look (2009) High frequency of PTEN PI3K and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood 114(3):647–650 https://doi.org/10.1182/blood-2009-02-206722

  26. P Y, Jotta M A, Ganazza A, Silva M B, Viana M J, da Silva L J G, Zambaldi J T, Barata S R, Brandalise J A, Yunes (2010) Negative prognostic impact of PTEN mutation in pediatric T-cell acute lymphoblastic leukemia. Leukemia 24(1):239–242 https://doi.org/10.1038/leu.2009.209

  27. Amélie, Trinquand Aline, Tanguy-Schmidt Raouf, Ben Abdelali Jérôme, Lambert Kheira, Beldjord Etienne, Lengliné Noémie, De Gunzburg Dominique, Payet-Bornet Ludovic, Lhermitte Hossein, Mossafa Véronique, Lhéritier Jonathan, Bond Françoise, Huguet Agnès, Buzyn Thibaud, Leguay Jean-Yves, Cahn Xavier, Thomas Yves, Chalandon André, Delannoy Caroline, Bonmati Sebastien, Maury Bertrand, Nadel Elizabeth, Macintyre Norbert, Ifrah Hervé, Dombret Vahid, Asnafi (2013) Journal of Clinical Oncology 31(34):4333–4342 https://doi.org/10.1200/JCO.2012.48.5292

  28. Tze King, Tan Chujing, Zhang Takaomi, Sanda (2019) Oncogenic transcriptional program driven by TAL1 in T-cell acute lymphoblastic leukemia. International Journal of Hematology 109(1):5–17 https://doi.org/10.1007/s12185-018-2518-z

  29. Britt M., Gustafsson Kristin, Mattsson Gordana, Bogdanovic Gustaf, Leijonhufvud Emma, Honkaniemi Kim, Ramme Anthony M., Ford (2018) Pediatric Blood & Cancer 65(11) e27310- https://doi.org/10.1002/pbc.27310

  30. B, Patel Y, Kang K, Cui M, Litt M S J, Riberio C, Deng T, Salz S, Casada X, Fu Y, Qiu K, Zhao S, Huang (2014) Aberrant TAL1 activation is mediated by an interchromosomal interaction in human T-cell acute lymphoblastic leukemia. Leukemia 28(2):349–361 https://doi.org/10.1038/leu.2013.158

  31. Nosaka, K., Maeda, M., Tamiya, S., Sakai, T., Mitsuya, H., & Matsuoka, M. (2000). Increasing methylation of the CDKN2A gene is associated with the progression of adult T-cell leukemia. Cancer research, 60(4), 1043–1048.

    Google Scholar 

  32. Baer, R. (1993, December). TAL1, TAL2 and LYL1: a family of basic helix-loop-helix proteins implicated in T cell acute leukaemia. In Seminars in cancer biology (Vol. 4, No. 6, pp. 341–347).

    Google Scholar 

  33. Erbilgin, Y., Sayitoglu, M., Hatirnaz, O., Dogru, O., Akcay, A., Tuysuz, G., ... & Ozbek, U. (2010). Prognostic significance of NOTCH1 and FBXW7 mutations in pediatric T-ALL. Disease markers, 28(6), 353–360.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley B. Pounds .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cao, X., Elsayed, A.H., Pounds, S.B. (2023). Statistical Methods Inspired by Challenges in Pediatric Cancer Multi-omics. In: Fridley, B., Wang, X. (eds) Statistical Genomics. Methods in Molecular Biology, vol 2629. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2986-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2986-4_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2985-7

  • Online ISBN: 978-1-0716-2986-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics