Skip to main content

Absolute Quantitative Targeted Proteomics Assays for Plasma Proteins

  • Protocol
  • First Online:
Serum/Plasma Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2628))

Abstract

Preclinical and clinical trials require rapid, precise, and multiplexed analytical methods to characterize the complex samples and to allow high-throughput biomarker monitoring with low consumption of sample material. Targeted proteomics has been used to address these challenges when quantifying protein abundances in complex biological matrices. In many of these studies, blood plasma is collected either as the main research or diagnostic sample or in combination with other specimens. Mass spectrometry (MS)-based targeted proteomics using multiple reaction monitoring (MRM) or parallel reaction monitoring (PRM) with stable isotope-labeled internal standard (SIS) peptides allows robust characterization of blood plasma protein via absolute quantification. Compared to other commonly used technologies like enzyme-linked immunosorbent assay (ELISA), targeted proteomics is faster, more sensitive, and more cost-effective. Here we describe a protocol for the quantification of proteins in blood plasma using targeted MRM proteomics with heavy-labeled internal standards. The 270-protein panel allows rapid and robust absolute quantitative proteomic characterization of blood plasma in a 1 h gradient. The method we describe here works for non-depleted plasma, which makes it simple and easy to implement. Moreover, the protocol works with the two most commonly used blood plasma collection methods used in practice, namely, either K2EDTA or sodium citrate as anticoagulants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boja ES, Rodriguez H (2011) The path to clinical proteomics research: integration of proteomics, genomics, clinical laboratory and regulatory science. Korean J Lab Med 31(2):61–71

    CAS  Google Scholar 

  2. Parker CE, Pearson TW, Anderson NL, Borchers CH (2010) Mass-spectrometry-based clinical proteomics – a review and prospective. Analyst 135:1830–1838

    Article  CAS  Google Scholar 

  3. Palmblad M, Tiss A, Cramer R (2009) Mass spectrometry in clinical proteomics – from the present to the future. Proteomics Clin Appl 3:6–17

    Article  CAS  Google Scholar 

  4. Apweiler R, Aslanidis C, Deufel T, Gerstner A, Hansen J, Hochstrasser D, Kellner R, Kubicek M, Lottspeich F, Maser E, Mewes HW, Meyer HE, Müllner S, Mutter W, Neumaier M, Nollau P, Nothwang HG, Ponten F, Radbruch A, Reinert K, Rothe G, Stockinger H, Tarnok A, Taussig MJ, Thiel A, Thiery J, Ueffing M, Valet G, Vandekerckhove J, Verhuven W, Wagener C, Wagner O, Schmitz G (2009) Approaching clinical proteomics: current state and future fields of application in fluid proteomics. Clin Chem Lab Med 47(6):724–744

    Article  CAS  Google Scholar 

  5. Percy AJ, Chambers AG, Yang J, Hardie DB, Borchers CH (2014) Advances in multiplexed MRM-based protein biomarker quantitation toward clinical utility. Biochim Biophys Acta 1844(5):917–926

    Article  CAS  Google Scholar 

  6. Picotti P, Aebersold R (2012) Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods 9(6):555–566

    Article  CAS  Google Scholar 

  7. Keshishian H, Addona T, Burgess M, Mani DR, Shi X, Kuhn E, Sabatine MS, Gerszten RE, Carr SA (2009) Quantification of cardiovascular biomarkers in patient plasma by targeted mass spectrometry and stable isotope dilution. Mol Cell Proteomics 8:2339–2349

    Article  CAS  Google Scholar 

  8. Selevsek N, Matondo M, Carbayo MS, Aebersold R, Domon B (2011) Systematic quantification of peptides/proteins in urine using selected reaction monitoring. Proteomics 11(6):1135–1147

    Article  CAS  Google Scholar 

  9. Schiess R, Wollscheid B, Aebersold R (2009) Targeted proteomic strategy for clinical biomarker discovery. Mol Oncol 3(1):33–44

    Article  CAS  Google Scholar 

  10. Fortin T, Salvador A, Charrier JP, Lenz C, Lacoux X, Morla A, Choquet-Kastylevsky G, Lemoine J (2009) Clinical quantitation of prostate-specific antigen biomarker in the low nanogram/milliliter range by conventional bore liquid chromatography-tandem mass spectrometry (multiple reaction monitoring) coupling and correlation with ELISA tests. Mol Cell Proteomics 8:1006–1015

    Article  CAS  Google Scholar 

  11. Domanski D, Percy AJ, Yang J, Chambers AG, Hill JS, Cohen Freue GV, Borchers CH (2012) MRM-based multiplexed quantitation of 67 putative cardiovascular disease biomarkers in human plasma. Proteomics 12(8):1222–1243

    Article  CAS  Google Scholar 

  12. Percy AJ, Chambers AG, Yang J, Borchers CH (2013) Multiplexed MRM-based quantitation of candidate cancer biomarker proteins in undepleted and non-enriched human plasma. Proteomics 13:2202–2215

    Article  CAS  Google Scholar 

  13. Altelaar AF, Frese CK, Preisinger C, Hennrich ML, Schram AW, Timmers HT, Heck AJ, Mohammed S (2013) Benchmarking stable isotope labeling based quantitative proteomics. J Proteome 88:14–26

    Article  CAS  Google Scholar 

  14. Rodríguez-Suárez E, Whetton AD (2013) The application of quantification techniques in proteomics for biomedical research. Mass Spectrom Rev 32(1):1–26

    Article  Google Scholar 

  15. Addona TA, Abbatiello SE, Schilling B, Skates SJ, Mani DR, Bunk DM, Spiegelman CH, Zimmerman LJ, Ham A-JL, Keshishian H, Hall SC, Allen S, Blackman RK, Borchers CH, Buck C, Cardasis HL, Cusack MP, Dodder NG, Gibson BW, Held JM, Hiltke T, Jackson A, Johansen EB, Kinsinger CR, Li J, Mesri M, Neubert TA, Niles RK, Pulsipher TC, Ransohoff D, Rodriguez H, Rudnick PA, Smith D, Tabb DL, Tegeler TJ, Variyath AM, Vega-Montoto LJ, Wahlander A, Waldemarson S, Wang M, Whiteaker JR, Zhao L, Anderson NL, Fisher SJ, Liebler DC, Paulovich AG, Regnier FE, Tempst P, Carr SA (2009) Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat Biotechnol 27(7):633–641

    Article  CAS  Google Scholar 

  16. Abbatiello SE, Mani DR, Schilling B, Maclean B, Zimmerman LJ, Feng X, Cusack MP, Sedransk N, Hall SC, Addona T, Allen S, Dodder NG, Ghosh M, Held JM, Victoria H, Inerowicz HD, Jackson A, Keshishian H, Kim JW, Lyssand JS, Riley CP, Rudnick P, Sadowski P, Shaddox K, Smith D, Tomazela D, Wahlander A, Waldemarson S, Whitwell CA, You J, Zhang S, Kinsinger CR, Mesri M, Rodriguez H, Borchers CH, Buck C, Fisher SJ, Gibson BW, Liebler D, Maccoss M, Neubert TA, Paulovich A, Regnier F, Skates SJ, Tempst P, Wang M, Carr SA (2013) Design, implementation, and multi-site evaluation of a system suitability protocol for the quantitative assessment of instrument performance in LC-MRM-MS. Mol Cell Proteomics 12(99):2623–2639

    Article  CAS  Google Scholar 

  17. Abbatiello SE, Schilling B, Mani DR, Zimmerman LJ, Hall SC, MacLean B, Albertolle M, Allen S, Burgess MW, Cusack MP, Ghosh M, Hedrick V, Held JM, Inerowicz HD, Jackson A, Keshishian H, Kinsinger CR, Lyssand J, Makowski L, Mesri M, Rodriguez H, Rudnick P, Sadowski P, Sedransk N, Shaddox K, Skates SJ, Kuhn E, Smith D, Whiteaker JR, Whitwell C, Zhang S, Borchers CH, Fisher SJ, Gibson BW, Liebler DC, MacCoss MJ, Neubert TA, Paulovich AG, Regnier FE, Tempst P, Carr SA (2015) Large-scale inter-laboratory study to develop, analytically validate and apply highly multiplexed, quantitative peptide assays to measure cancer-relevant proteins in plasma. Mol Cell Proteomics 14(9):2357–2374

    Article  CAS  Google Scholar 

  18. Carr SA, Abbatiello SE, Ackermann BL, Borchers C, Domon B, Deutsch EW, Grant RP, Hoofnagle AN, Hüttenhain R, Koomen JM, Liebler DC, Liu T, Maclean B, Mani DR, Mansfield E, Neubert H, Paulovich AG, Reiter L, Vitek O, Aebersold R, Anderson L, Bethem R, Blonder J, Boja E, Botelho J, Boyne M, Bradshaw RA, Burlingame AL, Chan D, Keshishian H, Kuhn E, Kinsinger C, Lee J, Lee SW, Moritz R, Oses-Prieto J, Rifai N, Ritchie J, Rodriguez H, Srinivas PR, Townsend RR, Van Eyk J, Whiteley G, Wiita A, Weintraub S (2014) Targeted peptide measurements in biology and medicine: best practices for mass spectrometry-based assay development using a fit-for-purpose approach. Mol Cell Proteomics 13(3):907–917

    Article  CAS  Google Scholar 

  19. Keshishian H, Addona T, Burgess M, Kuhn E, Carr SA (2007) Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution. Mol Cell Proteomics 6:2212–2229

    Article  CAS  Google Scholar 

  20. Kuzyk MA, Smith D, Yang J, Cross TJ, Jackson AM, Hardie DB, Anderson NL, Borchers CH (2009) Multiple reaction monitoring-based, multiplexed, absolute quantitation of 45 proteins in human plasma. Mol Cell Proteomics 8(8):1860–1877

    Article  CAS  Google Scholar 

  21. Percy AJ, Chambers AG, Parker CE, Borchers CH (2013) Absolute quantitation of proteins in human blood by multiplexed multiple reaction monitoring mass spectrometry. Methods Mol Biol 1000:167–189

    Article  CAS  Google Scholar 

  22. Percy AJ, Yang J, Chambers AG, Simon R, Hardie DB, Borchers CH (2014) Multiplexed MRM with internal standards for cerebrospinal fluid candidate protein biomarker quantitation. J Proteome Res 13(8):3733–3747

    Article  CAS  Google Scholar 

  23. Percy AJ, Yang J, Hardie DB, Chambers AG, Tamura-Wells J, Borchers CH (2015) Precise quantitation of 136 urinary proteins by LC/MRM-MS using stable isotope labeled peptides as internal standards for biomarker discovery and/or verification studies. Methods 81:24–33

    Article  CAS  Google Scholar 

  24. Percy AJ, Mohammed Y, Yang J, Borchers CH (2015) A standardized kit for automated quantitative assessment of candidate protein biomarkers in human plasma. Bioanalysis 7(23):2991–3004

    Article  CAS  Google Scholar 

  25. Mohammed Y, Pan J, Zhang S, Han J, Borchers CH (2018) ExSTA: external standard addition method for accurate high-throughput quantitation in targeted proteomics experiments. Proteomics Clin Appl 12(2):1600180

    Article  Google Scholar 

  26. Mohammed Y, Percy AJ, Chambers AG, Borchers CH (2015) Qualis-SIS: automated standard curve generation and quality assessment for multiplexed targeted quantitative proteomic experiments with labeled standards. J Proteome Res 14(2):1137–1146

    Article  CAS  Google Scholar 

  27. Lange V, Picotti P, Domon B, Aebersold R (2008) Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol 4:222

    Article  Google Scholar 

  28. Kirkpatrick DS, Gerber SA, Gygi SP (2005) The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. Methods 35(3):265–273

    Article  CAS  Google Scholar 

  29. Shi T, Song E, Nie S, Rodland KD, Liu T, Qian WJ, Smith RD (2016) Advances in targeted proteomics and applications to biomedical research. Proteomics 16(15–16):2160–2182

    Article  CAS  Google Scholar 

  30. Pappireddi N, Martin L, Wuhr M (2019) A review on quantitative multiplexed proteomics. Chembiochem 20(10):1210–1224

    Article  CAS  Google Scholar 

  31. Peterson AC, Russell JD, Bailey DJ, Westphall MS, Coon JJ (2012) Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol Cell Proteomics 11(11):1475–1488

    Article  Google Scholar 

  32. Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci U S A 100(12):6940–6945

    Article  CAS  Google Scholar 

  33. Escher C, Reiter L, MacLean B, Ossola R, Herzog F, Chilton J, MacCoss MJ, Rinner O (2012) Using iRT, a normalized retention time for more targeted measurement of peptides. Proteomics 12(8):1111–1121

    Article  CAS  Google Scholar 

  34. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198–207

    Article  CAS  Google Scholar 

  35. Carr SA, Abbatiello SE, Ackermann BL, Borchers C, Domon B, Deutsch EW, Grant RP, Hoofnagle AN, Huttenhain R, Koomen JM, Liebler DC, Liu T, MacLean B, Mani DR, Mansfield E, Neubert H, Paulovich AG, Reiter L, Vitek O, Aebersold R, Anderson L, Bethem R, Blonder J, Boja E, Botelho J, Boyne M, Bradshaw RA, Burlingame AL, Chan D, Keshishian H, Kuhn E, Kinsinger C, Lee JS, Lee SW, Moritz R, Oses-Prieto J, Rifai N, Ritchie J, Rodriguez H, Srinivas PR, Townsend RR, Van Eyk J, Whiteley G, Wiita A, Weintraub S (2014) Targeted peptide measurements in biology and medicine: best practices for mass spectrometry-based assay development using a fit-for-purpose approach. Mol Cell Proteomics 13(3):907–917

    Article  CAS  Google Scholar 

  36. Picotti P, Bodenmiller B, Aebersold R (2013) Proteomics meets the scientific method. Nat Methods 10(1):25–27

    Article  Google Scholar 

  37. Tilburg J, Michaud SA, Maracle CX, Versteeg HH, Borchers CH, van Vlijmen BJM, Mohammed Y (2020) Plasma protein signatures of a murine venous thrombosis model and Slc44a2 knockout mice using quantitative-targeted proteomics. Thromb Haemost 120(3):423–436

    Article  Google Scholar 

  38. Mohammed Y, van Vlijmen BJ, Yang J, Percy AJ, Palmblad M, Borchers CH, Rosendaal FR (2017) Multiplexed targeted proteomic assay to assess coagulation factor concentrations and thrombosis-associated cancer. Blood Adv 1(15):1080–1087

    Article  CAS  Google Scholar 

  39. Liebler DC, Zimmerman LJ (2013) Targeted quantitation of proteins by mass spectrometry. Biochemistry 52(22):3797–3806

    Article  CAS  Google Scholar 

  40. Mohammed Y, Domański D, Jackson AM, Smith DS, Deelder AM, Palmblad M, Borchers CH (2014) PeptidePicker: a scientific workflow with web interface for selecting appropriate peptides for targeted proteomics experiments. J Proteome 106:151–161

    Article  CAS  Google Scholar 

  41. Mohammed Y, Borchers CH (2015) An extensive library of surrogate peptides for all human proteins. J Proteome 129:93–97

    Article  CAS  Google Scholar 

  42. Mohammed Y, Touw CE, Nemeth B, van Adrichem RA, Borchers CH, Rosendaal FR, van Vlijmen BJ, Cannegieter SC (2022) Targeted proteomics for evaluating risk of venous thrombosis following traumatic lower-leg injury or knee arthroscopy. J Thromb Haemost 20(3):684–699

    Article  CAS  Google Scholar 

  43. Gaither C, Popp R, Mohammed Y, Borchers CH (2020) Determination of the concentration range for 267 proteins from 21 lots of commercial human plasma using highly multiplexed multiple reaction monitoring mass spectrometry. Analyst 145(10):3634–3644

    Article  CAS  Google Scholar 

  44. Bhowmick P, Roome S, Borchers CH, Goodlett DR, Mohammed Y (2021) An update on MRMAssayDB: a comprehensive resource for targeted proteomics assays in the community. J Proteome Res 20(4):2105–2115

    Article  CAS  Google Scholar 

  45. Mohammed Y, Bhowmick P, Smith DS, Domanski D, Jackson AM, Michaud SA, Malchow S, Percy AJ, Chambers AG, Palmer A, Zhang S, Sickmann A, Borchers CH (2017) PeptideTracker: a knowledge base for collecting and storing information on protein concentrations in biological tissues. Proteomics 17(7). https://doi.org/10.1002/pmic.201600210

  46. MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, Kern R, Tabb DL, Liebler DC, MacCoss MJ (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26(7):966–968

    Article  CAS  Google Scholar 

  47. R_Core_Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. www.R-project.org

    Google Scholar 

  48. Mohammed Y, Kootte RS, Kopatz WF, Borchers CH, Buller HR, Versteeg HH, Nieuwdorp M, van Mens TE (2020) The intestinal microbiome potentially affects thrombin generation in human subjects. J Thromb Haemost 18(3):642–650

    Article  CAS  Google Scholar 

  49. Mohammed Y, Goodlett DR, Cheng MP, Vinh DC, Lee TC, McGeer A, Sweet D, Tran K, Lee T, Murthy S, Boyd JH, Singer J, Walley KR, Patrick DM, Quan C, Ismail S, Amar L, Pal A, Bassawon R, Fesdekjian L, Gou K, Lamontagne F, Marshall J, Haljan G, Fowler R, Winston BW, Russell JA, ARBs CORONA I (2022) Longitudinal plasma proteomics analysis reveals novel candidate biomarkers in acute COVID-19. J Proteome Res 21:975–992

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Genome Canada and Genome British Columbia for support (grant 282PQP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassene Mohammed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mohammed, Y., Goodlett, D., Borchers, C.H. (2023). Absolute Quantitative Targeted Proteomics Assays for Plasma Proteins. In: Greening, D.W., Simpson, R.J. (eds) Serum/Plasma Proteomics. Methods in Molecular Biology, vol 2628. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2978-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2978-9_27

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2977-2

  • Online ISBN: 978-1-0716-2978-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics