Skip to main content

In Vitro Generation of Murine Bone Marrow–Derived Dendritic Cells

  • Protocol
  • First Online:
Dendritic Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2618))

Abstract

Dendritic cells (DCs) are mononuclear phagocytes of hematopoietic origin residing in lymphoid and nonlymphoid tissues. DCs are often referred as the sentinels of the immune system as they can sense pathogens and danger signals. Upon activation, DCs migrate to the draining lymph nodes and present antigens to naïve T cells to trigger adaptive immunity. Hematopoietic progenitors for DCs reside in the adult bone marrow (BM). Therefore, BM cell culture systems have been developed to generate large amounts of primary DCs in vitro conveniently enabling to analyze their developmental and functional features. Here, we review various protocols enabling to generate DCs in vitro from murine BM cells and discuss the cellular heterogeneity of each culture system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Merad M, Sathe P, Helft J, Miller J, Mortha A (2013) The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 31:563–604. https://doi.org/10.1146/annurev-immunol-020711-074950

    Article  CAS  PubMed  Google Scholar 

  2. Guermonprez P, Gerber-Ferder Y, Vaivode K, Bourdely P, Helft J (2019) Origin and development of classical dendritic cells. Int Rev Cell Mol Biol 349:1–54. https://doi.org/10.1016/bs.ircmb.2019.08.002

    Article  CAS  PubMed  Google Scholar 

  3. Naik SH, Sathe P, Park H-Y, Metcalf D, Proietto AI, Dakic A, Carotta S, O’Keeffe M, Bahlo M, Papenfuss A et al (2007) Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat Immunol 8:1217–1226. https://doi.org/10.1038/ni1522

    Article  CAS  PubMed  Google Scholar 

  4. Onai N, Obata-Onai A, Schmid MA, Ohteki T, Jarrossay D, Manz MG (2007) Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nat Immunol 8:1207–1216. https://doi.org/10.1038/ni1518

    Article  CAS  PubMed  Google Scholar 

  5. McKenna HJ, Stocking KL, Miller RE, Brasel K, De Smedt T, Maraskovsky E, Maliszewski CR, Lynch DH, Smith J, Pulendran B et al (2000) Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95:3489–3497

    Google Scholar 

  6. Becher B, Tugues S, Greter M (2016) GM-CSF: from growth factor to central mediator of tissue inflammation. Immunity 45:963–973. https://doi.org/10.1016/j.immuni.2016.10.026

    Article  CAS  PubMed  Google Scholar 

  7. Helft J, Böttcher J, Chakravarty P, Zelenay S, Huotari J, Schraml BU, Goubau D, Reis e Sousa C (2015) GM-CSF mouse bone marrow cultures comprise a heterogeneous population of CD11c+MHCII+ macrophages and dendritic cells. Immunity 42:1197–1211. https://doi.org/10.1016/j.immuni.2015.05.018

    Article  CAS  PubMed  Google Scholar 

  8. Menezes S, Melandri D, Anselmi G, Perchet T, Loschko J, Dubrot J, Patel R, Gautier EL, Hugues S, Longhi MP et al (2016) The heterogeneity of Ly6Chi monocytes controls their differentiation into iNOS+ macrophages or monocyte-derived dendritic cells. Immunity 45:1205–1218. https://doi.org/10.1016/j.immuni.2016.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Inaba K, Inaba M, Romani N, Aya H, Deguchi M, Ikehara S, Muramatsu S, Steinman RM (1992) Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176:1693–1702. https://doi.org/10.1084/jem.176.6.1693

    Article  CAS  PubMed  Google Scholar 

  10. Inaba K, Inaba M, Deguchi M, Hagi K, Yasumizu R, Ikehara S, Muramatsu S, Steinman RM (1993) Granulocytes, macrophages, and dendritic cells arise from a common major histocompatibility complex class II-negative progenitor in mouse bone marrow. Proc Natl Acad Sci U S A 90:3038–3042. https://doi.org/10.1073/pnas.90.7.3038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gao Y, Nish SA, Jiang R, Hou L, Licona-Limón P, Weinstein JS, Zhao H, Medzhitov R (2013) Control of T helper 2 responses by transcription factor IRF4-dependent dendritic cells. Immunity 39:722–732. https://doi.org/10.1016/j.immuni.2013.08.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Helft J, Böttcher JP, Chakravarty P, Zelenay S, Huotari J, Schraml BU, Goubau D, Reis e Sousa C (2016) Alive but confused: heterogeneity of CD11c(+) MHC class II(+) cells in GM-CSF mouse bone marrow cultures. Immunity 44:3–4. https://doi.org/10.1016/j.immuni.2015.12.014

    Article  CAS  PubMed  Google Scholar 

  13. Miller JC, Brown BD, Shay T, Gautier EL, Jojic V, Cohain A, Pandey G, Leboeuf M, Elpek KG, Helft J, Hashimoto D, Chow A, Price J, Greter M, Bogunovic M, Bellemare-Pelletier A, Frenette PS, Randolph GJ, Turley SJ, Merad M (2012) Immunological genome consortium. Deciphering the transcriptional network of the dendritic cell lineage. Nat Immunol 13(9):888–899. https://doi.org/10.1038/ni.2370. Epub 2012 Jul 15. PMID: 22797772; PMCID: PMC3985403

  14. Katzenelenbogen Y, Sheban F, Yalin A, Yofe I, Svetlichnyy D, Jaitin DA, Bornstein C, Moshe A, Keren-Shaul H, Cohen M et al (2020) Coupled scRNA-Seq and intracellular protein activity reveal an immunosuppressive role of trem2 in cancer. Cell 182:872–885.e19. https://doi.org/10.1016/j.cell.2020.06.032

    Article  CAS  PubMed  Google Scholar 

  15. Faure-André G, Vargas P, Yuseff M-I, Heuzé M, Diaz J, Lankar D, Steri V, Manry J, Hugues S, Vascotto F et al (2008) Regulation of dendritic cell migration by CD74, the MHC class II-associated invariant chain. Science 322:1705–1710. https://doi.org/10.1126/science.1159894

    Article  CAS  PubMed  Google Scholar 

  16. Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179:1109–1118. https://doi.org/10.1084/jem.179.4.1109

    Article  CAS  PubMed  Google Scholar 

  17. Briseño CG, Haldar M, Kretzer NM, Wu X, Theisen DJ, Kc W, Durai V, Grajales-Reyes GE, Iwata A, Bagadia P et al (2016) Distinct transcriptional programs control cross-priming in classical and monocyte-derived dendritic cells. Cell Rep 15:2462–2474. https://doi.org/10.1016/j.celrep.2016.05.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vander Lugt B, Khan AA, Hackney JA, Agrawal S, Lesch J, Zhou M, Lee WP, Park S, Xu M, DeVoss J et al (2014) Transcriptional programming of dendritic cells for enhanced MHC class II antigen presentation. Nat Immunol 15:161–167. https://doi.org/10.1038/ni.2795

    Article  CAS  PubMed  Google Scholar 

  19. Lewis KL, Caton ML, Bogunovic M, Greter M, Grajkowska LT, Ng D, Klinakis A, Charo IF, Jung S, Gommerman JL et al (2011) Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity 35:780–791. https://doi.org/10.1016/j.immuni.2011.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tussiwand R, Everts B, Grajales-Reyes GE, Kretzer NM, Iwata A, Bagaitkar J, Wu X, Wong R, Anderson DA, Murphy TL et al (2015) Klf4 expression in conventional dendritic cells is required for T helper 2 cell responses. Immunity 42:916–928. https://doi.org/10.1016/j.immuni.2015.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sathe P, Metcalf D, Vremec D, Naik SH, Langdon WY, Huntington ND, Wu L, Shortman K (2014) Lymphoid tissue and plasmacytoid dendritic cells and macrophages do not share a common macrophage-dendritic cell-restricted progenitor. Immunity 41:104–115. https://doi.org/10.1016/j.immuni.2014.05.020

    Article  CAS  PubMed  Google Scholar 

  22. Sathe P, Pooley J, Vremec D, Mintern J, Jin J-O, Wu L, Kwak J-Y, Villadangos JA, Shortman K (2011) The acquisition of antigen cross-presentation function by newly formed dendritic cells. J Immunol 186:5184–5192. https://doi.org/10.4049/jimmunol.1002683

    Article  CAS  PubMed  Google Scholar 

  23. Mayer CT, Ghorbani P, Nandan A, Dudek M, Arnold-Schrauf C, Hesse C, Berod L, Stuve P, Puttur F, Merad M et al (2014) Selective and efficient generation of functional Batf3-dependent CD103+ dendritic cells from mouse bone marrow. Blood 124:3081–3091. https://doi.org/10.1182/blood-2013-12-545772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kirkling ME, Cytlak U, Lau CM, Lewis KL, Resteu A, Khodadadi-Jamayran A, Siebel CW, Salmon H, Merad M, Tsirigos A et al (2018) Notch signaling facilitates in vitro generation of cross-presenting classical dendritic cells. Cell Rep 23:3658–3672.e6. https://doi.org/10.1016/j.celrep.2018.05.068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Helft .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gerber-Ferder, Y., Bourdely, P., Vetillard, M., Guermonprez, P., Helft, J. (2023). In Vitro Generation of Murine Bone Marrow–Derived Dendritic Cells. In: Sisirak, V. (eds) Dendritic Cells. Methods in Molecular Biology, vol 2618. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2938-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2938-3_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2937-6

  • Online ISBN: 978-1-0716-2938-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics