Skip to main content

Harnessing Single-Cell RNA Sequencing to Identify Dendritic Cell Types, Characterize Their Biological States, and Infer Their Activation Trajectory

  • Protocol
  • First Online:
Dendritic Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2618))

Abstract

Dendritic cells (DCs) orchestrate innate and adaptive immunity, by translating the sensing of distinct danger signals into the induction of different effector lymphocyte responses, to induce the defense mechanisms the best suited to face the threat. Hence, DCs are very plastic, which results from two key characteristics. First, DCs encompass distinct cell types specialized in different functions. Second, each DC type can undergo different activation states, fine-tuning its functions depending on its tissue microenvironment and the pathophysiological context, by adapting the output signals it delivers to the input signals it receives. Hence, to better understand DC biology and harness it in the clinic, we must determine which combinations of DC types and activation states mediate which functions and how.

To decipher the nature, functions, and regulation of DC types and their physiological activation states, one of the methods that can be harnessed most successfully is ex vivo single-cell RNA sequencing (scRNAseq). However, for new users of this approach, determining which analytics strategy and computational tools to choose can be quite challenging, considering the rapid evolution and broad burgeoning in the field. In addition, awareness must be raised on the need for specific, robust, and tractable strategies to annotate cells for cell type identity and activation states. It is also important to emphasize the necessity of examining whether similar cell activation trajectories are inferred by using different, complementary methods. In this chapter, we take these issues into account for providing a pipeline for scRNAseq analysis and illustrating it with a tutorial reanalyzing a public dataset of mononuclear phagocytes isolated from the lungs of naïve or tumor-bearing mice. We describe this pipeline step-by-step, including data quality controls, dimensionality reduction, cell clustering, cell cluster annotation, inference of the cell activation trajectories, and investigation of the underpinning molecular regulation. It is accompanied with a more complete tutorial on GitHub. We hope that this method will be helpful for both wet lab and bioinformatics researchers interested in harnessing scRNAseq data for deciphering the biology of DCs or other cell types and that it will contribute to establishing high standards in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vu Manh TP, Bertho N, Hosmalin A, Schwartz-Cornil I, Dalod M (2015) Investigating evolutionary conservation of dendritic cell subset identity and functions. Front Immunol 6:260. https://doi.org/10.3389/fimmu.2015.00260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alexandre YO, Cocita CD, Ghilas S, Dalod M (2014) Deciphering the role of DC subsets in MCMV infection to better understand immune protection against viral infections. Front Microbiol 5:378. https://doi.org/10.3389/fmicb.2014.00378

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mattiuz R, Brousse C, Ambrosini M, Cancel JC, Bessou G, Mussard J, Sanlaville A, Caux C, Bendriss-Vermare N, Valladeau-Guilemond J, Dalod M, Crozat K (2021) Type 1 conventional dendritic cells and interferons are required for spontaneous CD4(+) and CD8(+) T-cell protective responses to breast cancer. Clin Transl Immunology 10(7):e1305. https://doi.org/10.1002/cti2.1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ardouin L, Luche H, Chelbi R, Carpentier S, Shawket A, Montanana Sanchis F, Santa Maria C, Grenot P, Alexandre Y, Gregoire C, Fries A, Vu Manh TP, Tamoutounour S, Crozat K, Tomasello E, Jorquera A, Fossum E, Bogen B, Azukizawa H, Bajenoff M, Henri S, Dalod M, Malissen B (2016) Broad and largely concordant molecular changes characterize tolerogenic and immunogenic dendritic cell maturation in thymus and periphery. Immunity 45(2):305–318. https://doi.org/10.1016/j.immuni.2016.07.019

    Article  CAS  PubMed  Google Scholar 

  5. Zilionis R, Engblom C, Pfirschke C, Savova V, Zemmour D, Saatcioglu HD, Krishnan I, Maroni G, Meyerovitz CV, Kerwin CM, Choi S, Richards WG, De Rienzo A, Tenen DG, Bueno R, Levantini E, Pittet MJ, Klein AM (2019) Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity 50(5):1317–1334 e1310. https://doi.org/10.1016/j.immuni.2019.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maier B, Leader AM, Chen ST, Tung N, Chang C, LeBerichel J, Chudnovskiy A, Maskey S, Walker L, Finnigan JP, Kirkling ME, Reizis B, Ghosh S, D’Amore NR, Bhardwaj N, Rothlin CV, Wolf A, Flores R, Marron T, Rahman AH, Kenigsberg E, Brown BD, Merad M (2020) A conserved dendritic-cell regulatory program limits antitumour immunity. Nature 580(7802):257–262. https://doi.org/10.1038/s41586-020-2134-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Abbas A, Vu Manh TP, Valente M, Collinet N, Attaf N, Dong C, Naciri K, Chelbi R, Brelurut G, Cervera-Marzal I, Rauwel B, Davignon JL, Bessou G, Thomas-Chollier M, Thieffry D, Villani AC, Milpied P, Dalod M, Tomasello E (2020) The activation trajectory of plasmacytoid dendritic cells in vivo during a viral infection. Nat Immunol 21(9):983–997. https://doi.org/10.1038/s41590-020-0731-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ghislat G, Cheema AS, Baudoin E, Verthuy C, Ballester PJ, Crozat K, Attaf N, Dong C, Milpied P, Malissen B, Auphan-Anezin N, Manh TPV, Dalod M, Lawrence T (2021) NF-kappaB-dependent IRF1 activation programs cDC1 dendritic cells to drive antitumor immunity. Sci Immunol 6(61):eabg3570. https://doi.org/10.1126/sciimmunol.abg3570

    Article  CAS  PubMed  Google Scholar 

  9. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, Park JE, Stephenson E, Polanski K, Goncalves A, Gardner L, Holmqvist S, Henriksson J, Zou A, Sharkey AM, Millar B, Innes B, Wood L, Wilbrey-Clark A, Payne RP, Ivarsson MA, Lisgo S, Filby A, Rowitch DH, Bulmer JN, Wright GJ, Stubbington MJT, Haniffa M, Moffett A, Teichmann SA (2018) Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 563(7731):347–353. https://doi.org/10.1038/s41586-018-0698-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Crozat K, Tamoutounour S, Vu Manh TP, Fossum E, Luche H, Ardouin L, Guilliams M, Azukizawa H, Bogen B, Malissen B, Henri S, Dalod M (2011) Cutting edge: expression of XCR1 defines mouse lymphoid-tissue resident and migratory dendritic cells of the CD8alpha+ type. J Immunol 187(9):4411–4415. https://doi.org/10.4049/jimmunol.1101717

    Article  CAS  PubMed  Google Scholar 

  11. Manh TP, Alexandre Y, Baranek T, Crozat K, Dalod M (2013) Plasmacytoid, conventional, and monocyte-derived dendritic cells undergo a profound and convergent genetic reprogramming during their maturation. Eur J Immunol 43(7):1706–1715. https://doi.org/10.1002/eji.201243106

    Article  CAS  PubMed  Google Scholar 

  12. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN, Reich M, Hieronymus H, Wei G, Armstrong SA, Haggarty SJ, Clemons PA, Wei R, Carr SA, Lander ES, Golub TR (2006) The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313(5795):1929–1935. https://doi.org/10.1126/science.1132939

    Article  CAS  PubMed  Google Scholar 

  13. Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M, Hoffman P, Stoeckius M, Papalexi E, Mimitou EP, Jain J, Srivastava A, Stuart T, Fleming LM, Yeung B, Rogers AJ, McElrath JM, Blish CA, Gottardo R, Smibert P, Satija R (2021) Integrated analysis of multimodal single-cell data. Cell 184(13):3573–3587.e29. https://doi.org/10.1016/j.cell.2021.04.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McCarthy DJ, Campbell KR, Lun AT, Wills QF (2017) Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics 33(8):1179–1186. https://doi.org/10.1093/bioinformatics/btw777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32(4):381–386. https://doi.org/10.1038/nbt.2859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V, Lidschreiber K, Kastriti ME, Lonnerberg P, Furlan A, Fan J, Borm LE, Liu Z, van Bruggen D, Guo J, He X, Barker R, Sundstrom E, Castelo-Branco G, Cramer P, Adameyko I, Linnarsson S, Kharchenko PV (2018) RNA velocity of single cells. Nature 560(7719):494–498. https://doi.org/10.1038/s41586-018-0414-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, McDermott MG, Monteiro CD, Gundersen GW, Ma’ayan A (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44(W1):W90–W97. https://doi.org/10.1093/nar/gkw377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Spinelli L, Carpentier S, Montanana Sanchis F, Dalod M, Vu Manh TP (2015) BubbleGUM: automatic extraction of phenotype molecular signatures and comprehensive visualization of multiple gene set enrichment analyses. BMC Genomics 16:814. https://doi.org/10.1186/s12864-015-2012-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Robbins SH, Walzer T, Dembele D, Thibault C, Defays A, Bessou G, Xu H, Vivier E, Sellars M, Pierre P, Sharp FR, Chan S, Kastner P, Dalod M (2008) Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biol 9(1):R17. https://doi.org/10.1186/gb-2008-9-1-r17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sancho D, Mourao-Sa D, Joffre OP, Schulz O, Rogers NC, Pennington DJ, Carlyle JR, Reis e Sousa C (2008) Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin. J Clin Invest 118(6):2098–2110. https://doi.org/10.1172/JCI34584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Caminschi I, Proietto AI, Ahmet F, Kitsoulis S, Shin Teh J, Lo JC, Rizzitelli A, Wu L, Vremec D, van Dommelen SL, Campbell IK, Maraskovsky E, Braley H, Davey GM, Mottram P, van de Velde N, Jensen K, Lew AM, Wright MD, Heath WR, Shortman K, Lahoud MH (2008) The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement. Blood 112(8):3264–3273. https://doi.org/10.1182/blood-2008-05-155176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Miller JC, Brown BD, Shay T, Gautier EL, Jojic V, Cohain A, Pandey G, Leboeuf M, Elpek KG, Helft J, Hashimoto D, Chow A, Price J, Greter M, Bogunovic M, Bellemare-Pelletier A, Frenette PS, Randolph GJ, Turley SJ, Merad M, Immunological Genome C (2012) Deciphering the transcriptional network of the dendritic cell lineage. Nat Immunol 13(9):888–899. https://doi.org/10.1038/ni.2370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vu Manh TP, Elhmouzi-Younes J, Urien C, Ruscanu S, Jouneau L, Bourge M, Moroldo M, Foucras G, Salmon H, Marty H, Quere P, Bertho N, Boudinot P, Dalod M, Schwartz-Cornil I (2015) Defining mononuclear phagocyte subset homology across several distant warm-blooded vertebrates through comparative transcriptomics. Front Immunol 6:299. https://doi.org/10.3389/fimmu.2015.00299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tomasello E, Naciri K, Chelbi R, Bessou G, Fries A, Gressier E, Abbas A, Pollet E, Pierre P, Lawrence T, Vu Manh TP, Dalod M (2018) Molecular dissection of plasmacytoid dendritic cell activation in vivo during a viral infection. EMBO J 37(19):e98836. https://doi.org/10.15252/embj.201798836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gautier EL, Shay T, Miller J, Greter M, Jakubzick C, Ivanov S, Helft J, Chow A, Elpek KG, Gordonov S, Mazloom AR, Ma’ayan A, Chua WJ, Hansen TH, Turley SJ, Merad M, Randolph GJ, Immunological Genome C (2012) Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol 13(11):1118–1128. https://doi.org/10.1038/ni.2419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Baranek T, Manh TP, Alexandre Y, Maqbool MA, Cabeza JZ, Tomasello E, Crozat K, Bessou G, Zucchini N, Robbins SH, Vivier E, Kalinke U, Ferrier P, Dalod M (2012) Differential responses of immune cells to type I interferon contribute to host resistance to viral infection. Cell Host Microbe 12(4):571–584. https://doi.org/10.1016/j.chom.2012.09.002

    Article  CAS  PubMed  Google Scholar 

  27. Vu Manh TP, Dalod M (2016) Characterization of dendritic cell subsets through gene expression analysis. Methods Mol Biol 1423:211–243. https://doi.org/10.1007/978-1-4939-3606-9_16

    Article  CAS  PubMed  Google Scholar 

  28. See P, Dutertre CA, Chen J, Gunther P, McGovern N, Irac SE, Gunawan M, Beyer M, Handler K, Duan K, Sumatoh HRB, Ruffin N, Jouve M, Gea-Mallorqui E, Hennekam RCM, Lim T, Yip CC, Wen M, Malleret B, Low I, Shadan NB, Fen CFS, Tay A, Lum J, Zolezzi F, Larbi A, Poidinger M, Chan JKY, Chen Q, Renia L, Haniffa M, Benaroch P, Schlitzer A, Schultze JL, Newell EW, Ginhoux F (2017) Mapping the human DC lineage through the integration of high-dimensional techniques. Science 356(6342):eaag3009. https://doi.org/10.1126/science.aag3009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK, Swerdlow H, Satija R, Smibert P (2017) Simultaneous epitope and transcriptome measurement in single cells. Nat Methods 14(9):865–868. https://doi.org/10.1038/nmeth.4380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Petukhov V, Guo J, Baryawno N, Severe N, Scadden DT, Samsonova MG, Kharchenko PV (2018) dropEst: pipeline for accurate estimation of molecular counts in droplet-based single-cell RNA-seq experiments. Genome Biol 19(1):78. https://doi.org/10.1186/s13059-018-1449-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Longman RS, Braun D, Pellegrini S, Rice CM, Darnell RB, Albert ML (2007) Dendritic-cell maturation alters intracellular signaling networks, enabling differential effects of IFN-alpha/beta on antigen cross-presentation. Blood 109(3):1113–1122. https://doi.org/10.1182/blood-2006-05-023465

    Article  CAS  PubMed  Google Scholar 

  32. Lun AT, McCarthy DJ, Marioni JC (2016) A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Res 5:2122. https://doi.org/10.12688/f1000research.9501.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wolf FA, Angerer P, Theis FJ (2018) SCANPY: large-scale single-cell gene expression data analysis. Genome Biol 19(1):15. https://doi.org/10.1186/s13059-017-1382-0

    Article  PubMed  PubMed Central  Google Scholar 

  34. McDavid A, Finak G, Chattopadyay PK, Dominguez M, Lamoreaux L, Ma SS, Roederer M, Gottardo R (2013) Data exploration, quality control and testing in single-cell qPCR-based gene expression experiments. Bioinformatics 29(4):461–467. https://doi.org/10.1093/bioinformatics/bts714

    Article  CAS  PubMed  Google Scholar 

  35. Wolf FA, Hamey FK, Plass M, Solana J, Dahlin JS, Gottgens B, Rajewsky N, Simon L, Theis FJ (2019) PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol 20(1):59. https://doi.org/10.1186/s13059-019-1663-x

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tanabe M, Kanehisa M (2012) Using the KEGG database resource. Curr Protoc Bioinformatics Chapter 1:Unit1 12. https://doi.org/10.1002/0471250953.bi0112s38

    Article  Google Scholar 

  37. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P (2015) The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst 1(6):417–425. https://doi.org/10.1016/j.cels.2015.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work benefited from data assembled by the ImmGen consortium. This work was performed with financial support from Inserm, CNRS, and FRM (Equipe labellisée to M.D.). We thank the CIML CB2M group for their technical and methodological support in bioinformatics analyses, in particular Lionel Spinelli. The project leading to this publication has received funding from the “Investissements d’Avenir” French Government program managed by the French National Research Agency (ANR-16-CONV-0001) and from Excellence Initiative of Aix-Marseille University-A*MIDEX, including a CENTURI PhD fellowship to A.S.C.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marc Dalod or Thien-Phong Vu Manh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cheema, A.S., Duan, K., Dalod, M., Vu Manh, TP. (2023). Harnessing Single-Cell RNA Sequencing to Identify Dendritic Cell Types, Characterize Their Biological States, and Infer Their Activation Trajectory. In: Sisirak, V. (eds) Dendritic Cells. Methods in Molecular Biology, vol 2618. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2938-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2938-3_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2937-6

  • Online ISBN: 978-1-0716-2938-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics