Skip to main content

Lateral Flow Microarray-Based ELISA for Cytokines

  • Protocol
  • First Online:
ELISA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2612))

Abstract

Cytokines are well known to be involved in numerous biological responses with diverse mechanisms of action, including the inflammatory process. The so-called “cytokine storm” has recently been associated with cases of severe COVID-19 infection.

Lateral flow microarray (LFM) devices have been constructed for multiplex detection of cytokines. The LFM-cytokine rapid test involves the immobilization of an array of capture anti-cytokine antibodies. Here, we describe the methods to create and use multiplex lateral flow-based immunoassays based upon the enzyme-linked immunosorbent assay (ELISA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andryukov BG (2020) Six decades of lateral flow immunoassay: from determining metabolic markers to diagnosing COVID-19. AIMS Microbiol 6(3):280–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Braunstein GD (2014) The long gestation of the modern home pregnancy test. Clin Chem 60(1):18–21

    Article  CAS  PubMed  Google Scholar 

  3. Liu Y, Zhan L, Qin Z et al (2021) Ultrasensitive and highly specific lateral flow assays for point-of-care diagnosis. ACS Nano 15:3593–3611

    Article  CAS  PubMed  Google Scholar 

  4. Zherdev AV, Dzantiev BB (2019) Ways to reach lower detection limits of latera flow immunoassays. https://doi.org/10.5772/intechopen.76926

  5. Corstjens P, de Dood CJ, van der Ploeg-van Schip JJ (2011) Lateral flow assay for simultaneous detection of cellular- and humoral immune responses. Clin Biochem 44(14–15):1241–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Swanson C, D’Andrea A (2013) Lateral flow assay with near-infrared dye for multiplex detection. Clinical Chemistry 59(4 Point-of-care testing):641–648

    Article  CAS  PubMed  Google Scholar 

  7. Zhao Y, Wang H, Zhang P et al (2016) Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay. Sci Rep 6:21342. https://doi.org/10.1038/srep21342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. He PJW, Katis IN, Eason RW, Sones CL (2018) Rapid multiplexed detection on lateral-flow devices using a laser direct-write technique. Biosensors 8:97. https://doi.org/10.3390/bios8040097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carter DJ, Cary RB (2007) Lateral flow microarrays: a novel platform for rapid nucleic acid detection based on miniaturized lateral flow chromatography. Nucleic Acids Res 35(10):e74. https://doi.org/10.1093/nar/gkm269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gantelius J, Bass T, Gundberg A, et al (2011) A ten-minute high density lateral flow protein microarray assay. 15th international conference on miniaturized systems for chemistry and life sciences, 2–6 October 2011, Seattle, WA, USA. 978-0-9798064-4-5/μTAS 2011/$20©11CBMS-0001, pp 1176–1178

    Google Scholar 

  11. Taranova NA, Byzova NA, Zaiko VV et al (2013) Integration of lateral flow and microarray technologies for multiplex immunoassay: application to the determination of drugs of abuse. Microchim Acta 180:1165–1172. https://doi.org/10.1007/s00604-013-1043-2

    Article  CAS  Google Scholar 

  12. Gottfried-Blackmore A, Rubin S, Bai L et al (2020) Effects of processing conditions on stability of immune analytes in human blood. Nat Res Sci Rep 10:2732B. https://doi.org/10.1038/s41598-020-74274-8

    Article  CAS  Google Scholar 

  13. Matson RS (2021) Chapter 2: Well-based antibody arrays. In: Whittaker KC, Huang R-P (eds) Antibody arrays: methods and protocols, methods in molecular biology, vol 2237. Springer Nature, Cham. https://doi.org/10.1007/978-1-0716-1064-0_2

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Matson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Matson, R.S. (2023). Lateral Flow Microarray-Based ELISA for Cytokines. In: Matson, R.S. (eds) ELISA. Methods in Molecular Biology, vol 2612. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2903-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2903-1_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2902-4

  • Online ISBN: 978-1-0716-2903-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics