Skip to main content

Computational Integration of HSV-1 Multi-omics Data

  • Protocol
  • First Online:
Virus-Host Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2610))

Abstract

Functional genomics techniques based on next-generation sequencing provide new avenues for studying host responses to viral infections at multiple levels, including transcriptional and translational processes and chromatin organization. This chapter provides an overview on the computational integration of multiple types of “omics” data on lytic herpes simplex virus 1 (HSV-1) infection. It summarizes methods developed and applied in two publications that combined 4sU-seq for studying de novo transcription, ribosome profiling for investigating active translation, RNA-seq of subcellular RNA fractions for determining subcellular location of transcripts, and ATAC-seq for profiling chromatin accessibility genome-wide. These studies revealed an unprecedented disruption of transcription termination in HSV-1 infection resulting in widespread read-through transcription beyond poly(A) sites for most but not all host genes. This impacts chromatin architecture by increasing chromatin accessibility selectively in downstream regions of affected genes. In this way, computational integration of multi-omics data identified novel and unsuspected mechanisms at play in lytic HSV-1 infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63. https://doi.org/10.1038/nrg2484

    Article  CAS  Google Scholar 

  2. Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324(5924):218–223. https://doi.org/10.1126/science.1168978

    Article  CAS  Google Scholar 

  3. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10(12):1213–1218. https://doi.org/10.1038/nmeth.2688

    Article  CAS  Google Scholar 

  4. Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316(5830):1497–1502. https://doi.org/10.1126/science.1141319

    Article  CAS  Google Scholar 

  5. Soon WW, Hariharan M, Snyder MP (2013) High-throughput sequencing for biology and medicine. Mol Syst Biol 9(1):640. https://doi.org/10.1038/msb.2012.61

    Article  Google Scholar 

  6. Westermann AJ, Gorski SA, Vogel J (2012) Dual RNA-seq of pathogen and host. Nat Rev Microbiol 10(9):618–630. https://doi.org/10.1038/nrmicro2852

    Article  CAS  Google Scholar 

  7. Cao Y, Zhang K, Liu L, Li W, Zhu B, Zhang S, Xu P, Liu W, Li J (2019) Global transcriptome analysis of H5N1 influenza virus-infected human cells. Hereditas 156:10–10. https://doi.org/10.1186/s41065-019-0085-9

    Article  Google Scholar 

  8. Bauer DLV, Tellier M, Martínez-Alonso M, Nojima T, Proudfoot NJ, Murphy S, Fodor E (2018) Influenza virus mounts a two-pronged attack on host RNA polymerase II transcription. Cell Rep 23(7):2119–2129.e2113. https://doi.org/10.1016/j.celrep.2018.04.047

    Article  CAS  Google Scholar 

  9. Birkenheuer CH, Danko CG, Baines JD (2018) Herpes simplex virus 1 dramatically alters loading and positioning of RNA polymerase II on host genes early in infection. J Virol 92(8):e02184–e02117. https://doi.org/10.1128/jvi.02184-17

    Article  CAS  Google Scholar 

  10. Pheasant K, Möller-Levet CS, Jones J, Depledge D, Breuer J, Elliott G (2018) Nuclear-cytoplasmic compartmentalization of the herpes simplex virus 1 infected cell transcriptome is co-ordinated by the viral endoribonuclease vhs and cofactors to facilitate the translation of late proteins. PLoS Pathog 14(11):e1007331. https://doi.org/10.1371/journal.ppat.1007331

    Article  CAS  Google Scholar 

  11. Rutkowski AJ, Erhard F, L'Hernault A, Bonfert T, Schilhabel M, Crump C, Rosenstiel P, Efstathiou S, Zimmer R, Friedel CC, Dölken L (2015) Widespread disruption of host transcription termination in HSV-1 infection. Nat Commun 6:7126. https://doi.org/10.1038/ncomms8126

  12. Wyler E, Menegatti J, Franke V, Kocks C, Boltengagen A, Hennig T, Theil K, Rutkowski A, Ferrai C, Baer L, Kermas L, Friedel C, Rajewsky N, Akalin A, Dölken L, Grasser F, Landthaler M (2017) Widespread activation of antisense transcription of the host genome during herpes simplex virus 1 infection. Genome Biol 18(1):209. https://doi.org/10.1186/s13059-017-1329-5

  13. Hennig T, Michalski M, Rutkowski AJ, Djakovic L, Whisnant AW, Friedl MS, Jha BA, Baptista MAP, L'Hernault A, Erhard F, Dölken L, Friedel CC (2018) HSV-1-induced disruption of transcription termination resembles a cellular stress response but selectively increases chromatin accessibility downstream of genes. PLoS Pathog 14(3):e1006954. https://doi.org/10.1371/journal.ppat.1006954

  14. Whisnant AW, Jurges CS, Hennig T, Wyler E, Prusty B, Rutkowski AJ, L'Hernault A, Djakovic L, Gobel M, Doring K, Menegatti J, Antrobus R, Matheson NJ, Kunzig FWH, Mastrobuoni G, Bielow C, Kempa S, Liang C, Dandekar T, Zimmer R, Landthaler M, Grasser F, Lehner PJ, Friedel CC, Erhard F, Dölken L (2020) Integrative functional genomics decodes herpes simplex virus 1. Nat Commun 11(1):2038. https://doi.org/10.1038/s41467-020-15992-5

  15. Friedel CC, Whisnant AW, Djakovic L, Rutkowski AJ, Friedl MS, Kluge M, Williamson JC, Sai S, Vidal RO, Sauer S, Hennig T, Grothey A, Milic A, Prusty BK, Lehner PJ, Matheson NJ, Erhard F, Dolken L (2021) Dissecting herpes simplex virus 1-induced host shutoff at the RNA level. J Virol 95(3). https://doi.org/10.1128/JVI.01399-20

  16. Wang X, Liu L, Whisnant AW, Hennig T, Djakovic L, Haque N, Bach C, Sandri-Goldin RM, Erhard F, Friedel CC, Dölken L, Shi Y (2021) Mechanism and consequences of herpes simplex virus 1-mediated regulation of host mRNA alternative polyadenylation. PLoS Genet 17(3):e1009263. https://doi.org/10.1371/journal.pgen.1009263

  17. Blanco-Melo D, Nilsson-Payant BE, Liu W-C, Uhl S, Hoagland D, Møller R, Jordan TX, Oishi K, Panis M, Sachs D, Wang TT, Schwartz RE, Lim JK, Albrecht RA, tenOever BR (2020) Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 181(5):1036–1045.e1039. https://doi.org/10.1016/j.cell.2020.04.026

    Article  CAS  Google Scholar 

  18. Pellett PE, Roizman B (2013) Herpesviridae. In: Knipe DM, Howley PM (eds) Fields virology, vol 2, 6th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  19. Weidner-Glunde M, Kruminis-Kaszkiel E, Savanagouder M (2020) Herpesviral latency-common themes. Pathogens 9(2). https://doi.org/10.3390/pathogens9020125

  20. Maeda E, Akahane M, Kiryu S, Kato N, Yoshikawa T, Hayashi N, Aoki S, Minami M, Uozaki H, Fukayama M, Ohtomo K (2009) Spectrum of Epstein-Barr virus-related diseases: a pictorial review. Jpn J Radiol 27(1):4–19. https://doi.org/10.1007/s11604-008-0291-2

    Article  Google Scholar 

  21. Roizman B, Knipe DM, Whitley RJ (2007) Herpes simplex viruses. In: Knipe DMH (ed) Fields virology, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 2501–2601

    Google Scholar 

  22. Dölken L, Ruzsics Z, Radle B, Friedel CC, Zimmer R, Mages J, Hoffmann R, Dickinson P, Forster T, Ghazal P, Koszinowski UH (2008) High-resolution gene expression profiling for simultaneous kinetic parameter analysis of RNA synthesis and decay. RNA 14(9):1959–1972. https://doi.org/10.1261/rna.1136108

  23. Friedel CC, Dölken L (2009) Metabolic tagging and purification of nascent RNA: implications for transcriptomics. Mol BioSyst 5(11):1271–1278. https://doi.org/10.1039/b911233b

  24. Windhager L, Bonfert T, Burger K, Ruzsics Z, Krebs S, Kaufmann S, Malterer G, L'Hernault A, Schilhabel M, Schreiber S, Rosenstiel P, Zimmer R, Eick D, Friedel CC, Dölken L (2012) Ultrashort and progressive 4sU-tagging reveals key characteristics of RNA processing at nucleotide resolution. Genome Res 22(10):2031–2042. https://doi.org/10.1101/gr.131847.111

    Article  CAS  Google Scholar 

  25. Davari K, Lichti J, Friedel CC, Glasmacher E (2018) Real-time analysis of transcription factor binding, transcription, translation, and turnover to display global events during cellular activation. J Vis Exp 133. https://doi.org/10.3791/56752

  26. Davari K, Lichti J, Gallus C, Greulich F, Uhlenhaut NH, Heinig M, Friedel CC, Glasmacher E (2017) Rapid genome-wide recruitment of RNA polymerase II drives transcription, splicing, and translation events during T cell responses. Cell Rep 19(3):643–654. https://doi.org/10.1016/j.celrep.2017.03.069

    Article  CAS  Google Scholar 

  27. Andrew S (2010) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

  28. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17(1):3. https://doi.org/10.14806/ej.17.1.200

    Article  Google Scholar 

  29. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25 (14):1754-1760. doi:https://doi.org/10.1093/bioinformatics/btp324

  30. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635

    Article  CAS  Google Scholar 

  31. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357–360. https://doi.org/10.1038/nmeth.3317

    Article  CAS  Google Scholar 

  32. Bonfert T, Csaba G, Zimmer R, Friedel CC (2012) A context-based approach to identify the most likely mapping for RNA-seq experiments. BMC Bioinf 13(Suppl 6):S9. https://doi.org/10.1186/1471-2105-13-S6-S9

    Article  Google Scholar 

  33. Bonfert T, Kirner E, Csaba G, Zimmer R, Friedel CC (2015) ContextMap 2: fast and accurate context-based RNA-seq mapping. BMC Bioinf 16:122. https://doi.org/10.1186/s12859-015-0557-5

    Article  CAS  Google Scholar 

  34. Bonfert T, Csaba G, Zimmer R, Friedel CC (2013) Mining RNA-seq data for infections and contaminations. PLoS One 8(9):e73071. https://doi.org/10.1371/journal.pone.0073071

    Article  CAS  Google Scholar 

  35. Bonfert T, Friedel CC (2017) Prediction of poly(A) sites by poly(A) read mapping. PLoS One 12(1):e0170914. https://doi.org/10.1371/journal.pone.0170914

    Article  CAS  Google Scholar 

  36. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628. https://doi.org/10.1038/nmeth.1226

    Article  CAS  Google Scholar 

  37. Wagner GP, Kin K, Lynch VJ (2012) Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci 131(4):281–285. https://doi.org/10.1007/s12064-012-0162-3

    Article  CAS  Google Scholar 

  38. Liao Y, Smyth GK, Shi W (2013) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7):923–930. https://doi.org/10.1093/bioinformatics/btt656

    Article  CAS  Google Scholar 

  39. Kwong AD, Frenkel N (1987) Herpes simplex virus-infected cells contain a function(s) that destabilizes both host and viral mRNAs. Proc Natl Acad Sci U S A 84(7):1926–1930

    Article  CAS  Google Scholar 

  40. Oroskar AA, Read GS (1989) Control of mRNA stability by the virion host shutoff function of herpes simplex virus. J Virol 63(5):1897–1906

    Article  CAS  Google Scholar 

  41. Feng P, Everly DN Jr, Read GS (2001) mRNA decay during herpesvirus infections: interaction between a putative viral nuclease and a cellular translation factor. J Virol 75(21):10272–10280. https://doi.org/10.1128/JVI.75.21.10272-10280.2001

    Article  CAS  Google Scholar 

  42. Doepker RC, Hsu WL, Saffran HA, Smiley JR (2004) Herpes simplex virus virion host shutoff protein is stimulated by translation initiation factors eIF4B and eIF4H. J Virol 78(9):4684–4699. https://doi.org/10.1128/jvi.78.9.4684-4699.2004

    Article  CAS  Google Scholar 

  43. Sarma N, Agarwal D, Shiflett LA, Read GS (2008) Small interfering RNAs that deplete the cellular translation factor eIF4H impede mRNA degradation by the virion host shutoff protein of herpes simplex virus. J Virol 82(13):6600–6609. https://doi.org/10.1128/JVI.00137-08

    Article  CAS  Google Scholar 

  44. Page HG, Read GS (2010) The virion host shutoff endonuclease (UL41) of herpes simplex virus interacts with the cellular cap-binding complex eIF4F. J Virol 84(13):6886–6890. https://doi.org/10.1128/JVI.00166-10

    Article  CAS  Google Scholar 

  45. Abrisch RG, Eidem TM, Yakovchuk P, Kugel JF, Goodrich JA (2016) Infection by herpes simplex virus 1 causes near-complete loss of RNA polymerase II occupancy on the host cell genome. J Virol 90(5):2503–2513. https://doi.org/10.1128/jvi.02665-15

    Article  CAS  Google Scholar 

  46. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  Google Scholar 

  47. Robinson MD, McCarthy DJ, Smyth GK (2009) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  Google Scholar 

  48. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (2002) The human genome browser at UCSC. Genome Res 12(6):996–1006. https://doi.org/10.1101/gr.229102

    Article  CAS  Google Scholar 

  49. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29(1):24–26. https://doi.org/10.1038/nbt.1754

    Article  CAS  Google Scholar 

  50. Vilborg A, Passarelli MC, Yario TA, Tycowski KT, Steitz JA (2015) Widespread inducible transcription downstream of human genes. Mol Cell 59(3):449–461. https://doi.org/10.1016/j.molcel.2015.06.016

    Article  CAS  Google Scholar 

  51. Vilborg A, Sabath N, Wiesel Y, Nathans J, Levy-Adam F, Yario TA, Steitz JA, Shalgi R (2017) Comparative analysis reveals genomic features of stress-induced transcriptional readthrough. Proc Natl Acad Sci 114(40):E8362–E8371. https://doi.org/10.1073/pnas.1711120114

    Article  CAS  Google Scholar 

  52. Kimura T, Nakayama K, Penninger J, Kitagawa M, Harada H, Matsuyama T, Tanaka N, Kamijo R, Vilcek J, Mak TW et al (1994) Involvement of the IRF-1 transcription factor in antiviral responses to interferons. Science 264(5167):1921–1924

    Article  CAS  Google Scholar 

  53. Dutia BM, Allen DJ, Dyson H, Nash AA (1999) Type I interferons and IRF-1 play a critical role in the control of a gammaherpesvirus infection. Virology 261(2):173–179. https://doi.org/10.1006/viro.1999.9834

    Article  CAS  Google Scholar 

  54. Brien JD, Daffis S, Lazear HM, Cho H, Suthar MS, Gale M Jr, Diamond MS (2011) Interferon regulatory factor-1 (IRF-1) shapes both innate and CD8(+) T cell immune responses against West Nile virus infection. PLoS Pathog 7(9):e1002230. https://doi.org/10.1371/journal.ppat.1002230

    Article  CAS  Google Scholar 

  55. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  Google Scholar 

  56. Lacasse JJ, Schang LM (2010) During lytic infections, herpes simplex virus type 1 DNA Is in complexes with the properties of unstable nucleosomes. J Virol 84(4):1920–1933. https://doi.org/10.1128/jvi.01934-09

    Article  CAS  Google Scholar 

  57. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9(9):R137. https://doi.org/10.1186/gb-2008-9-9-r137

    Article  CAS  Google Scholar 

  58. Boyle AP, Guinney J, Crawford GE, Furey TS (2008) F-Seq: a feature density estimator for high-throughput sequence tags. Bioinformatics 24(21):2537–2538. https://doi.org/10.1093/bioinformatics/btn480

    Article  CAS  Google Scholar 

  59. Guo Y, Mahony S, Gifford DK (2012) High resolution genome wide binding event finding and motif discovery reveals transcription factor spatial binding constraints. PLoS Comput Biol 8(8):e1002638. https://doi.org/10.1371/journal.pcbi.1002638

    Article  CAS  Google Scholar 

  60. Venkatesh S, Workman JL (2015) Histone exchange, chromatin structure and the regulation of transcription. Nat Rev Mol Cell Biol 16(3):178–189. https://doi.org/10.1038/nrm3941

    Article  CAS  Google Scholar 

  61. Hu B, Li X, Huo Y, Yu Y, Zhang Q, Chen G, Zhang Y, Fraser NW, Wu D, Zhou J (2016) Cellular responses to HSV-1 infection are linked to specific types of alterations in the host transcriptome. Sci Rep 6(1):28075. https://doi.org/10.1038/srep28075

    Article  CAS  Google Scholar 

  62. Jiang L, Schlesinger F, Davis CA, Zhang Y, Li R, Salit M, Gingeras TR, Oliver B (2011) Synthetic spike-in standards for RNA-seq experiments. Genome Res 21(9):1543–1551. https://doi.org/10.1101/gr.121095.111

    Article  CAS  Google Scholar 

  63. Lovén J, Orlando David A, Sigova Alla A, Lin Charles Y, Rahl Peter B, Burge Christopher B, Levens David L, Lee Tong I, Young Richard A (2012) Revisiting Global Gene Expression Analysis. Cell 151(3):476–482. https://doi.org/10.1016/j.cell.2012.10.012

    Article  CAS  Google Scholar 

  64. Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11(3):R25. https://doi.org/10.1186/gb-2010-11-3-r25

    Article  CAS  Google Scholar 

  65. Grün D, van Oudenaarden A (2015) Design and analysis of single-cell sequencing experiments. Cell 163(4):799–810. https://doi.org/10.1016/j.cell.2015.10.039

    Article  CAS  Google Scholar 

  66. Risso D, Ngai J, Speed TP, Dudoit S (2014) Normalization of RNA-seq data using factor analysis of control genes or samples. Nat Biotechnol 32(9):896–902. https://doi.org/10.1038/nbt.2931

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline C. Friedel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Friedel, C.C. (2023). Computational Integration of HSV-1 Multi-omics Data. In: Aquino de Muro, M. (eds) Virus-Host Interactions. Methods in Molecular Biology, vol 2610. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2895-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2895-9_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2894-2

  • Online ISBN: 978-1-0716-2895-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics