Skip to main content

Cell Migration in Three Dimensions

  • Protocol
  • First Online:
Cell Migration in Three Dimensions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2608))

Abstract

Cell migration plays an essential role in many pathophysiological processes, including embryonic development, wound healing, immunity, and cancer invasion, and is therefore a widely studied phenomenon in many different fields from basic cell biology to regenerative medicine. During the past decades, a multitude of increasingly complex methods have been developed to study cell migration. Here we compile a series of current state-of-the-art methods and protocols to investigate cell migration in a variety of model systems ranging from cells, organoids, tissue explants, and microfluidic systems to Drosophila, zebrafish, and mice. Together they cover processes as diverse as nuclear deformation, energy consumption, endocytic trafficking, and matrix degradation, as well as tumor vascularization and cancer cell invasion, sprouting angiogenesis, and leukocyte extravasation. Furthermore, methods to study developmental processes such as neural tube closure, germ layer specification, and branching morphogenesis are included, as well as scripts for the automated analysis of several aspects of cell migration. Together, this book constitutes a unique collection of methods of prime importance to those interested in the analysis of cell migration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scarpa E, Mayor R (2016) Collective cell migration in development. J Cell Biol 212:143–155. https://doi.org/10.1083/jcb.201508047

    Article  CAS  Google Scholar 

  2. Friedl P, Mayor R (2017) Tuning collective cell migration by cell-cell junction regulation. Cold Spring Harb Perspect Biol 9:4

    Article  Google Scholar 

  3. Yamada KM, Sixt M (2019) Mechanisms of 3D cell migration. Nat Rev Mol Cell Biol 20:738–752. https://doi.org/10.1038/s41580

    Article  CAS  Google Scholar 

  4. Hamm M, Kirchmaier B, Herzog W (2016) Sema3d controls collective endothelial cell migration by distinct mechanisms via Nrp1 and PlxnD1. J Cell Biol 215:415–430

    Article  CAS  Google Scholar 

  5. Vitorino P, Meyer T (2008) Modular control of endothelial sheet migration. Genes Dev 22:3268–3281. https://doi.org/10.1101/gad.1725808

    Article  CAS  Google Scholar 

  6. Svitkina T (2018) The actin cytoskeleton and actin-based motility. Cold Spring Harb Perspect Biol 10:a018267

    Article  Google Scholar 

  7. Lawson CD, Burridge K (2014) The on-off relationship of rho and Rac during integrin-mediated adhesion and cell migration. Small GTPases 5:e27958

    Article  Google Scholar 

  8. Sanz-Moreno V, Gadea G, Ahn J, Paterson H, Marra P, Pinner S, Sahai E, Marshall C (2008) Rac activation and inactivation control plasticity of tumor cell movement. Cell 135:510–523

    Article  CAS  Google Scholar 

  9. Pankov R, Endo Y, Even-Ram S, Araki M, Clark K, Cukierman E, Matsumoto K, Yamada K (2005) A Rac switch regulates random versus directionally persistent cell migration. J Cell Biol 170:793–802

    Article  CAS  Google Scholar 

  10. Worthylake RA, Burridge K (2003) RhoA and ROCK promote migration by limiting membrane protrusions. J Biol Chem 278:13578–13584. https://doi.org/10.1074/jbc.M211584200

    Article  CAS  Google Scholar 

  11. Ridley A (2015) Rho GTPase signalling in cell migration. Curr Opin Cell Biol 36:103–112

    Article  CAS  Google Scholar 

  12. Reversat A, Gaertner F, Merrin J, Stopp J, Tasciyan S, Aguilera J, de Vries I, Hauschild R, Hons M, Piel M, Callan-Jones A, Voituriez R, Sixt M (2020) Cellular locomotion using environmental topography. Nature 582:582–585. https://doi.org/10.1038/s41586-020-2283-z

    Article  CAS  Google Scholar 

  13. Zhang J, Goliwas KF, Wang W, Taufalele PV, Bordeleau F, Reinhart-King CA (2019) Energetic regulation of coordinated leader–follower dynamics during collective invasion of breast cancer cells. Proc Natl Acad Sci U S A 116:7867–7872. https://doi.org/10.1073/pnas.1809964116

    Article  CAS  Google Scholar 

  14. Trappmann B, Baker BM, Polacheck WJ, Choi CK, Burdick JA, Chen CS (2017) Matrix degradability controls multicellularity of 3D cell migration. Nat Commun 8:1–8. https://doi.org/10.1038/s41467-017-00418-6

    Article  CAS  Google Scholar 

  15. Gopal S, Veracini L, Grall D, Butori C, Schaub S, Audebert S, Camoin L, Baudelet E, Adwanska A, Beghelli-De La Forest Divonne S, Violette SM, Weinreb PH, Rekima S, Ilie M, Sudaka A, Hofman P, Van Obberghen-Schilling E (2017) Fibronectin-guided migration of carcinoma collectives. Nat Commun:8. https://doi.org/10.1038/NCOMMS14105

  16. Sanz-Moreno V, Gaggioli C, Yeo M, Albrengues J, Wallberg F, Viros A, Hooper S, Mitter R, Féral CC, Cook M, Larkin J, Marais R, Meneguzzi G, Sahai E, Marshall CJ (2011) ROCK and JAK1 signaling cooperate to control Actomyosin contractility in tumor cells and stroma. Cancer Cell 20:229–245. https://doi.org/10.1016/j.ccr.2011.06.018

    Article  CAS  Google Scholar 

  17. Humphries J, Chastney M, Askari J, Humphries M (2019) Signal transduction via integrin adhesion complexes. Curr Opin Cell Biol 56:14–21

    Article  CAS  Google Scholar 

  18. Gauthier NC, Roca-Cusachs P (2018) Mechanosensing at integrin-mediated cell–matrix adhesions: from molecular to integrated mechanisms. Curr Opin Cell Biol 50:20–26. https://doi.org/10.1016/j.ceb.2017.12.014

    Article  CAS  Google Scholar 

  19. Winograd-Katz SE, Fassler R, Geiger B, Legate KR (2014) The integrin adhesome: from genes and proteins to human disease. Nat Rev Mol Cell Biol 15:273–288

    Article  CAS  Google Scholar 

  20. Nolte MA, Margadant C (2020) Activation and suppression of hematopoietic integrins in hemostasis and immunity. Blood 135:7–16. https://doi.org/10.1182/blood.2019003336

    Article  Google Scholar 

  21. Burridge K (2017) Focal adhesions: a personal perspective on a half century of progress. FEBS J 284:3355–3361. https://doi.org/10.1111/febs.14195

    Article  CAS  Google Scholar 

  22. Jacquemet G, Hamidi H, Ivaska J (2015) Filopodia in cell adhesion, 3D migration and cancer cell invasion. Curr Opin Cell Biol 36:23–31. https://doi.org/10.1016/j.ceb.2015.06.007

    Article  CAS  Google Scholar 

  23. Cambi A, Chavrier P (2021) Tissue remodeling by invadosomes. Fac Rev 10. https://doi.org/10.12703/r/10-39

  24. Spuul P, Daubon T, Pitter B, Alonso F, Fremaux I, Kramer I, Montanez E, Genot E (2016) VEGF-A/notch-induced Podosomes Proteolyse basement membrane collagen-IV during retinal sprouting angiogenesis. Cell Rep 17:484–500. https://doi.org/10.1016/j.celrep.2016.09.016

    Article  CAS  Google Scholar 

  25. Liu YJ, Le Berre M, Lautenschlaeger F, Maiuri P, Callan-Jones A, Heuzé M, Takaki T, Voituriez R, Piel M (2015) Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell 160:659–672. https://doi.org/10.1016/j.cell.2015.01.007

    Article  CAS  Google Scholar 

  26. McGregor AL, Hsia C-R, Lammerding J (2016) Squish and squeeze-the nucleus as a physical barrier during migration in confined environments. Curr Opin Cell Biol 40:32–40

    Article  CAS  Google Scholar 

  27. Denais CM, Gilbert RM, Isermann P, McGregor AL, Te Lindert M, Weigelin B, Davidson PM, Friedl P, Wolf K, Lammerding J (2016) Nuclear envelope rupture and repair during cancer cell migration. Science 352:353–358. https://doi.org/10.1126/science.aad7297

    Article  CAS  Google Scholar 

  28. Raab M, Gentili M, De Belly H, Thiam HR, Vargas P, Jimenez AJ, Lautenschlaeger F, Voituriez R, Lennon-Duménil AM, Manel N, Piel M (2016) ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352:359–362. https://doi.org/10.1126/science.aad7611

    Article  CAS  Google Scholar 

  29. McCormack J, Welsh NJ, Braga VM (2013) Cycling around cell-cell adhesion with rho GTPase regulators. J Cell Sci 126:379–391

    Article  CAS  Google Scholar 

  30. Zegers MM, Friedl P (2014) Rho GTPases in collective cell migration. Small GTPases 5:e28997

    Article  Google Scholar 

  31. van der Bijl I, Nawaz K, Kazlauskaite U, van Stalborch A-M, Tol S, Orgaz AJ, van den Bout I, Reinhard NR, Sonnenberg A, Margadant C (2020) Reciprocal integrin/integrin antagonism through kindlin-2 and rho GTPases regulates cell cohesion and collective migration. Matrix Biol 93:60–78. https://doi.org/10.1016/j.matbio.2020.05.005

    Article  CAS  Google Scholar 

  32. White DP, Caswell PT, Norman JC (2007) alphavbeta3 and and alpha5beta1 integrin recycling pathways dictate downstream rho kinase signaling to regulate persistent cell migration. J Cell Biol 177:515–525

    Article  CAS  Google Scholar 

  33. Gjorevski N, Piotrowski AS, Varner VD, Nelson CM (2015) Dynamic tensile forces drive collective cell migration through three-dimensional extracellular matrices. Sci Rep 5:11458

    Article  Google Scholar 

  34. Ewald AJ, Brenot A, Duong M, Chan BS, Werb Z (2008) Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis. Dev Cell 14:570–581

    Article  CAS  Google Scholar 

  35. Libanje F, Raingeaud J, Luan R, Thomas Z, Zajac O, Veiga J, Marisa L, Adam J, Boige V, Malka D, Goéré D, Hall A, Soazec J, Prall F, Gelli M, Dartigues P, Jaulin F (2019) ROCK2 inhibition triggers the collective invasion of colorectal adenocarcinomas. EMBO J 38:e99299

    Article  Google Scholar 

  36. de Rooij J, Kerstens A, Danuser G, Schwartz MA, Waterman-Storer CM (2005) Integrin-dependent actomyosin contraction regulates epithelial cell scattering. J Cell Biol 171:153–164

    Article  Google Scholar 

  37. Gimond C, van Der Flier A, van Delft S, Brakebusch C, Kuikman I, Collard JG, Fässler R, Sonnenberg A (1999) Induction of cell scattering by expression of beta1-integrins in beta1-deficient epithelial cells requires activation of members of the rho family of GTPases and downregulation of cadherin and catenin function. J Cell Biol 147:1325–1340

    Article  CAS  Google Scholar 

  38. Margadant C, Kreft M, de Groot DJ, Norman JC, Sonnenberg A (2012) Distinct roles of Talin and kindlin in regulating integrin alpha5beta1 function and trafficking. Curr Biol 22:1554–1563

    Article  CAS  Google Scholar 

  39. Gaggioli C, Hooper S, Hidalgo-Carcedo C, Grosse R, Marshall J, Harrington K, Sahai E (2007) Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol 9:1392–1400

    Article  CAS  Google Scholar 

  40. Wang X, He L, Wu Y, Hahn K, Montell D (2010) Light-mediated activation reveals a key role for Rac in collective guidance of cell movement in vivo. Nat Cell Biol 12:591–597. https://doi.org/10.1038/ncb2061.Light-mediated

    Article  CAS  Google Scholar 

  41. Haeger A, Wolf K, Zegers MM, Friedl P (2015) Collective cell migration: guidance principles and hierarchies. Trends Cell Biol 25:556–566

    Article  Google Scholar 

  42. Eilken HM, Adams RH (2010) Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell Biol 22:617–625

    Article  CAS  Google Scholar 

  43. Pasut A, Becker LM, Cuypers A, Carmeliet P (2021) Endothelial cell plasticity at the single-cell level. Angiogenesis 24:311–326. https://doi.org/10.1007/s10456-021-09797-3

    Article  Google Scholar 

  44. De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong BW, Cauwenberghs S, Eelen G, Segura I, Cruys B, Bifari F, Decimo I, Blanco R, Wyns S, Vangindertael J, Rocha S, Collins RT, Munck S, Daelemans D, Imamura H, Devlieger R, Rider M, Van Veldhoven PP, Schuit F, Bartrons R, Hofkens J, Fraisl P, Telang S, DeBerardinis RJ, Schoonjans L, Vinckier S, Chesney J, Gerhardt H, Dewerchin M, Carmeliet P (2013) Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154:651–663. https://doi.org/10.1016/j.cell.2013.06.037

    Article  CAS  Google Scholar 

  45. Ochoa-Espinosa A, Affolter M (2012) Branching morphogenesis: from cells to organs and back. Cold Spring Harb Perspect Biol 4. https://doi.org/10.1101/cshperspect.a008243

  46. Wang S, Sekiguchi R, Daley WP, Yamada KM (2017) Cell and matrix dynamics in branching morphogenesis. J Cell Biol 216:559–570. https://doi.org/10.1016/B978-0-12-818422-6.00014-9

    Article  CAS  Google Scholar 

  47. Caswell P, Vadrevu S, Norman J (2009) Integrins: masters and slaves of endocytic transport. Nat Rev Mol Cell Biol 10:843–853

    Article  CAS  Google Scholar 

  48. Moreno-Layseca P, Icha J, Hamidi H, Ivaska J (2019) Integrin trafficking in cells and tissues. Nat Cell Biol 21:122–132. https://doi.org/10.1038/s41556-018-0223-z.Integrin

    Article  CAS  Google Scholar 

  49. Nolte MA, Nolte-‘t Hoen ENM, Margadant C (2021) Integrins control vesicular trafficking; new tricks for old dogs. Trends Biochem Sci 46:124–137. https://doi.org/10.1016/j.tibs.2020.09.001

    Article  CAS  Google Scholar 

  50. Paul NR, Jacquemet G, Caswell PT (2015) Endocytic trafficking of Integrins in cell migration. Curr Biol 25:R1092–R1105. https://doi.org/10.1016/j.cub.2015.09.049

    Article  CAS  Google Scholar 

  51. Jonker C, Galmes R, Veenendaal T, Brink C, van der Welle R, Liv N, de Rooij J, Peden AA, van der Sluijs P, Margadant C, Klumperman J (2018) Vps3 and Vps8 control integrin trafficking from early to recycling endosomes and regulate integrin-dependent functions. Nat Commun 9:1–12

    Article  CAS  Google Scholar 

  52. Lobert VH, Brech A, Pedersen NM, Wesche J, Oppelt A, Malerød L, Stenmark H (2010) Ubiquitination of α5β1 integrin controls fibroblast migration through lysosomal degradation of fibronectin-integrin complexes. Dev Cell 19:148–159. https://doi.org/10.1016/j.devcel.2010.06.010

    Article  CAS  Google Scholar 

  53. Kempers L, Wakayama Y, van der Bijl I, Furumaya C, De Cuyper IM, Jongejan A, Kat M, van Stalborch AMD, van Boxtel AL, Hubert M, Geerts D, van Buul JD, de Korte D, Herzog W, Margadant C (2021) The endosomal RIN2/Rab5C machinery prevents VEGFR2 degradation to control gene expression and tip cell identity during angiogenesis. Angiogenesis 24:695–714. https://doi.org/10.1007/s10456-021-09788-4

    Article  CAS  Google Scholar 

  54. Salvatore C, Malinverno C, Neumann B, Tischer C, Palamidessi A, Frittoli E, Panagiotakopoulou M, Disanza A, Malet-Engra G, Nastaly P, Galli C, Luise C, Bertalot G, Pece S, Di Fiore PP, Gauthier N, Ferrari A, Maiuri P, Scita G (2018) A RAB35-p85/PI3K axis controls oscillatory apical protrusions required for efficient chemotactic migration. Nat Commun 9:1–19

    CAS  Google Scholar 

  55. Linford A, Yoshimura SI, Bastos RN, Langemeyer L, Gerondopoulos A, Rigden DJ, Barr FA (2012) Rab14 and its exchange factor FAM116 link endocytic recycling and Adherens junction stability in migrating cells. Dev Cell 22:952–966

    Article  CAS  Google Scholar 

  56. Guadagno NA, Margiotta A, Bjørnestad SA, Haugen LH, Kjos I, Xu X, Hu X, Bakke O, Margadant F, Progida C (2020) Rab18 regulates focal adhesion dynamics by interacting with kinectin-1 at the endoplasmic reticulum. J Cell Biol 219. https://doi.org/10.1083/JCB.201809020

  57. Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10:513–525

    Article  CAS  Google Scholar 

  58. Homma Y, Kinoshita R, Kuchitsu Y, Wawro PS, Marubashi S, Oguchi ME, Ishida M, Fujita N, Fukuda M (2019) Comprehensive knockout analysis of the Rab family GTPases in epithelial cells. J Cell Biol 218:2035–2050

    Article  CAS  Google Scholar 

  59. Sung BH, Ketova T, Hoshino D, Zijlstra A, Weaver AM (2015) Directional cell movement through tissues is controlled by exosome secretion. Nat Commun 6:1–14. https://doi.org/10.1038/ncomms8164

    Article  CAS  Google Scholar 

  60. Sung BH, Parent CA, Weaver AM (2021) Extracellular vesicles: critical players during cell migration. Dev Cell 56:1861–1874

    Article  CAS  Google Scholar 

  61. Moissoglu K, Stueland M, Gasparski AN, Wang T, Jenkins LM, Hastings ML, Mili S (2020) RNA localization and co-translational interactions control RAB 13 GTP ase function and cell migration. EMBO J 39:1–19. https://doi.org/10.15252/embj.2020104958

    Article  CAS  Google Scholar 

  62. Costa G, Bradbury JJ, Tarannum N, Herbert SP (2020) RAB13 mRNA compartmentalisation spatially orients tissue morphogenesis. EMBO J 39:1–20. https://doi.org/10.15252/embj.2020106003

    Article  CAS  Google Scholar 

  63. Kuhn J, Lin Y, Devreotes PN (2021) Using live-cell imaging and synthetic biology to probe directed migration in Dictyostelium. Front Cell Dev Biol 9:740205. https://doi.org/10.3389/fcell.2021.740205

    Article  Google Scholar 

  64. Sherwood DR, Plastino J (2018) Invading, leading and navigating cells in caenorhabditis elegans: insights into cell movement in vivo. Genetics 208:53–78. https://doi.org/10.1534/genetics.117.300082

    Article  CAS  Google Scholar 

  65. Lebreton G, Casanova J (2014) Specification of leading and trailing cell features during collective migration in the Drosophila trachea. J Cell Sci 127:465–474. https://doi.org/10.1242/jcs.142737

    Article  CAS  Google Scholar 

  66. Klußmann-Fricke B-J, Martín-Bermudo MD, Llimargas M (2022) The basement membrane controls size and integrity of the drosophila tracheal tubes. Cell Rep 39:110734. https://doi.org/10.1016/j.celrep.2022.110734

    Article  CAS  Google Scholar 

  67. Bischoff MC, Bogdan S (2021) Collective cell migration driven by filopodia-new insights from the social behavior of myotubes. BioEssays 43:2100124. https://doi.org/10.1002/bies.202100124

    Article  CAS  Google Scholar 

  68. Prasad M, Wang X, He L, Cai D, Montell DJ (2015) Border cell migration: a model system for live imaging and genetic analysis of collective cell movement. Methods Mol Biol:89–97

    Google Scholar 

  69. Stuelten CH, Parent CA, Montell DJ (2018) Cell motility in cancer invasion and metastasis: insights from simple model organisms. Nat Rev Cancer 18:296–312. https://doi.org/10.1038/nrc.2018.15

    Article  CAS  Google Scholar 

  70. van Boxtel AL, Economou AD, Heliot C, Hill CS (2018) Long-range signaling activation and local inhibition separate the mesoderm and endoderm lineages. Dev Cell 44:179-191.e5. https://doi.org/10.1016/j.devcel.2017.11.021

    Article  CAS  Google Scholar 

  71. Richardson BE, Lehmann R (2010) Mechanisms guiding primordial germ cell migration: strategies from different organisms. Nat Rev Mol Cell Biol 11:37–49. https://doi.org/10.1038/nrm2815

    Article  CAS  Google Scholar 

  72. Mayor R, Theveneau E (2012) The neural crest. Dev 140:2247–2251. https://doi.org/10.1242/dev.091751

    Article  CAS  Google Scholar 

  73. Nieto MA, Huang RYYJ, Jackson RAA, Thiery JPP (2016) EMT: 2016. Cell 166:21–45. https://doi.org/10.1016/j.cell.2016.06.028

    Article  CAS  Google Scholar 

  74. Ellertsdóttir E, Lenard A, Blum Y, Krudewig A, Herwig L, Affolter M, Belting H (2010) Vascular morphogenesis in the zebrafish embryo. Dev Biol 341:56–65

    Article  Google Scholar 

  75. Schuermann A, Helker C, Herzog W (2014) Angiogenesis in zebrafish. Semin Cell Dev Biol 31:106–114

    Article  CAS  Google Scholar 

  76. Greenspan LJ, Weinstein BM (2021) To be or not to be: endothelial cell plasticity in development, repair, and disease. Angiogenesis 24:251–269. https://doi.org/10.1007/s10456-020-09761-7

    Article  Google Scholar 

  77. Li C, Ma J, Groenewoud A, Ren J, Liu S, Snaar-Jagalska BE, ten Dijke P (2022) Establishment of embryonic zebrafish xenograft assays to investigate TGF-β family signaling in human breast cancer progression. Methods Mol Biol

    Google Scholar 

  78. Bussmann J, Raz E (2015) Chemokine-guided cell migration and motility in zebrafish development. EMBO J 34:1309–1318. https://doi.org/10.15252/embj.201490105

    Article  CAS  Google Scholar 

  79. Ma EY, Raible DW (2009) Signaling pathways regulating zebrafish lateral line development. Curr Biol 19:381–386. https://doi.org/10.1016/J.CUB.2009.03.057

    Article  Google Scholar 

  80. Omelchenko T, Hall A, Anderson KV (2020) β-Pix-dependent cellular protrusions propel collective mesoderm migration in the mouse embryo. Nat Commun 11

    Google Scholar 

  81. Zhang Y, Kim TH, Niswander L (2012) Phactr4 regulates directional migration of enteric neural crest through PP1, integrin signaling, and cofilin activity. Genes Dev 26:69–81

    Article  Google Scholar 

  82. Molè MA, Galea GL, Rolo A, Weberling A, Nychyk O, De Castro SC, Savery D, Fässler R, Ybot-González P, Greene NDE, Copp AJ (2020) Integrin-mediated focal Anchorage drives epithelial zippering during mouse neural tube closure. Dev Cell 52:321-334.e6. https://doi.org/10.1016/j.devcel.2020.01.012

    Article  CAS  Google Scholar 

  83. Milde F, Lauw S, Koumoutsakos P, Iruela-Arispe ML (2013) The mouse retina in 3D: quantification of vascular growth and remodeling. Integr Biol 5:1426–1438. https://doi.org/10.1039/c3ib40085a

    Article  Google Scholar 

  84. Clemente C, Rius C, Alonso-Herranz L, Martín-Alonso M, Pollán Á, Camafeita E, Martínez F, Mota RA, Núñez V, Rodríguez C, Seiki M, Martínez-González J, Andrés V, Ricote M, Arroyo AG (2018) MT4-MMP deficiency increases patrolling monocyte recruitment to early lesions and accelerates atherosclerosis. Nat Commun 9. https://doi.org/10.1038/s41467-018-03351-4

  85. Seynhaeve ALB, ten Hagen TLM (2021) An adapted dorsal skinfold model used for 4D intravital followed by whole-mount imaging to reveal endothelial cell-pericyte association. Sci Rep 123:20389. https://doi.org/10.1038/s41598-021-99939-w

    Article  CAS  Google Scholar 

  86. Scheele CLGJ, Hannezo E, Muraro MJ, Zomer A, Langedijk NSM, Van Oudenaarden A, Simons BD, Van Rheenen J (2017) Identity and dynamics of mammary stem cells during branching morphogenesis. Nature 542:313–319. https://doi.org/10.1038/nature21046

    Article  CAS  Google Scholar 

  87. Gurevich DB, Severn CE, Twomey C, Greenhough A, Cash J, Toye AM, Mellor H, Martin P (2018) Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression. EMBO J 37:1–23. https://doi.org/10.15252/embj.201797786

    Article  CAS  Google Scholar 

  88. Cukierman E, Pankov R, Stevens DR, Yamada KM (2001) Taking cell-matrix adhesions to the third dimension. Science 294:1708–1712. https://doi.org/10.1126/science.1064829

    Article  CAS  Google Scholar 

  89. Chen H-C (2005) Boyden chamber assay. Methods Mol Biol 294:15–22

    Google Scholar 

  90. Trujillo S, Gonzalez-Garcia C, Rico P, Reid A, Windmill J, Dalby MJ, Salmeron-Sanchez M (2020) Engineered 3D hydrogels with full-length fibronectin that sequester and present growth factors. Biomaterials 252:120104. https://doi.org/10.1016/j.biomaterials.2020.120104

    Article  CAS  Google Scholar 

  91. Ondeck MG, Kumar A, Placone JK, Plunkett CM, Matte BF, Wong KC, Fattet L, Yang J, Engler AJ (2019) Dynamically stiffened matrix promotes malignant transformation of mammary epithelial cells via collective mechanical signaling. Proc Natl Acad Sci U S A 116:3502–3507. https://doi.org/10.1073/pnas.1814204116

    Article  CAS  Google Scholar 

  92. Kaukonen R, Jacquemet G, Hamidi H, Ivaska J (2017) Cell-derived matrices for studying cell proliferation and directional migration in a complex 3D microenvironment. Nat Protoc 12:2376–2390. https://doi.org/10.1038/nprot.2017.107

    Article  CAS  Google Scholar 

  93. Yang Q, Liberali P (2021) Collective behaviours in organoids. Curr Opin Cell Biol 72:81–90. https://doi.org/10.1016/j.ceb.2021.06.006

    Article  CAS  Google Scholar 

  94. Rodrigues J, Heinrich MA, Teixeira LM, Prakash J (2021) 3D in vitro model (R)evolution: unveiling tumor–stroma interactions. Trend Cancer 7:249–264. https://doi.org/10.1016/j.trecan.2020.10.009

    Article  CAS  Google Scholar 

  95. Khalil AA, Ilina O, Vasaturo A, Venhuizen JH, Vullings M, Venhuizen V, Bilos AB, Figdor CG, Span PN, Friedl P (2020) Collective invasion induced by an autocrine purinergic loop through connexin-43 hemichannels. J Cell Biol 219:e201911120. https://doi.org/10.1083/JCB.201911120

    Article  CAS  Google Scholar 

  96. Staneva R, El Marjou F, Barbazan J, Krndija D, Richon S, Clark AG, Vignjevic DM (2019) Cancer cells in the tumor core exhibit spatially coordinated migration patterns. J Cell Sci 132:1–9. https://doi.org/10.1242/jcs.220277

    Article  CAS  Google Scholar 

  97. Garcia-Arcos JM, Chabrier R, Deygas M, Nader G, Barbier L, Sáez PJ, Mathur A, Vargas P, Piel M (2019) Reconstitution of cell migration at a glance. J Cell Sci 132:0–2. https://doi.org/10.1242/jcs.225565

    Article  CAS  Google Scholar 

  98. Jiang X, Bruzewicz DA, Wong AP, Piel M, Whitesides GM (2005) Directing cell migration with asymmetric micropatterns. Proc Natl Acad Sci U S A 102:975–978. https://doi.org/10.1073/pnas.0408954102

    Article  CAS  Google Scholar 

  99. Roca-Cusachs P, Conte V, Trepat X (2017) Quantifying forces in cell biology. Nat Cell Biol 19:742–751. https://doi.org/10.1038/ncb3564

    Article  CAS  Google Scholar 

  100. Simpson KJ, Selfors LM, Bui J, Reynolds A, Leake D, Khvorova A, Brugge JS (2008) Identification of genes that regulate epithelial cell migration using an siRNA screening approach. Nat Cell Biol 10:1027–1038. https://doi.org/10.1038/ncb1762

    Article  CAS  Google Scholar 

  101. Chen X, Nadiarynkh O, Plotnikov S, Campagnola PJ (2012) Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat Protoc 7:654–669. https://doi.org/10.1038/nprot.2012.009

    Article  CAS  Google Scholar 

  102. Weigelin B, Bakker GJ, Friedl P (2016) Third harmonic generation microscopy of cells and tissue organization. J Cell Sci 129:245–255. https://doi.org/10.1242/jcs.152272

    Article  CAS  Google Scholar 

  103. Huet-Calderwood C, Rivera-Molina F, Iwamoto DV, Kromann EB, Toomre D, Calderwood DA (2017) Novel ecto-tagged integrins reveal their trafficking in live cells. Nat Commun 8:8. https://doi.org/10.1038/s41467-017-00646-w

    Article  CAS  Google Scholar 

  104. Ferrari R, Martin L, Tagit O, Guichard A, Cambi A, Vassilopoulos P, Chavrier P (2019) MT1-MMP directs force-producing proteolytic contacts that drive tumor cell invasion. Nat Commun 10. https://doi.org/10.1038/s41467-019-12930-y

  105. Mehta P, Rahman Z, Ten Dijke P, Boukany PE (2022) Microfluidics meets 3D cancer cell migration. Trend Cancer 8:683. https://doi.org/10.1016/j.trecan.2022.03.006

    Article  CAS  Google Scholar 

  106. Paul CD, Hung W-C, Wirtz D, Konstantopoulos K (2016) Engineered models of confined cell migration. Annu Rev Biomed Eng 18:159–180. https://doi.org/10.1146/annurev-bioeng-071114-040654

    Article  CAS  Google Scholar 

  107. Yi H-G, Lee H, Cho D-W, Kim HJ (2017) 3D printing of organs-on-chips. Bioengineering 4. https://doi.org/10.3390/bioengineering4010010

  108. Massarwa R, Niswander L (2013) In toto live imaging of mouse morphogenesis and new insights into neural tube closure. Development 140:226–236

    Article  CAS  Google Scholar 

  109. Aguilera-Castrejon A, Oldak B, Shani T, Ghanem N, Itzkovich C, Slomovich S, Tarazi S, Bayerl J, Chugaeva V, Ayyash M, Ashouokhi S, Sheban D, Livnat N, Lasman L, Viukov S, Zerbib M, Addadi Y, Rais Y, Cheng S, Stelzer Y, Keren-Shaul H, Shlomo R, Massarwa R, Novershtern N, Maza I, Hanna JH (2021) Ex utero mouse embryogenesis from pre-gastrulation to late organogenesis. Nature 593:119–124. https://doi.org/10.1038/s41586-021-03416-3

    Article  CAS  Google Scholar 

  110. van Rheenen J, Scheele CLGJ (2021) Intravital microscopy to illuminate cell state plasticity during metastasis. Curr Opin Cell Biol 72:28–35. https://doi.org/10.1016/j.ceb.2021.04.004

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Coert Margadant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Margadant, C. (2023). Cell Migration in Three Dimensions. In: Margadant, C. (eds) Cell Migration in Three Dimensions. Methods in Molecular Biology, vol 2608. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2887-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2887-4_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2886-7

  • Online ISBN: 978-1-0716-2887-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics