Skip to main content

Measuring Cell Mechanical Properties Using Microindentation

  • Protocol
  • First Online:
Mechanobiology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2600))

Abstract

Quantifying cell mechanical properties is of interest to better understand both physiological and pathological cellular processes. Cell mechanical properties are quantified by a finite set of parameters such as the effective Young’s modulus or the effective viscosity. These parameters can be extracted by applying controlled forces to a cell and by quantifying the resulting deformation of the cell.

Microindentation consists in pressing a cell with a calibrated spring terminated by a rigid tip and by measuring the resulting indentation of the cell. We have developed a microindentation technique that uses a flexible micropipette as a spring. The micropipette has a microbead at its tip, and this spherical geometry allows using analytical models to extract cell mechanical properties from microindentation experiments. We use another micropipette to hold the cell to be indented, which makes this technique well suited to study nonadherent cells, but we also describe how to use this technique on adherent cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guck J (2019) Some thoughts on the future of cell mechanics. Biophys Rev 11:667–670

    Article  Google Scholar 

  2. Guillou L, Sheybani R, Jensen AE, Di Carlo D, Caffery TS, Thomas CB, Shah AM, Tse HTK, O’Nea HR (2021) Development and validation of a cellular host response test as an early diagnostic for sepsis. PLoS One 16:1–17

    Article  Google Scholar 

  3. Guillou L, Babataheri A, Puech P-H, Barakat AI, Husson J (2016) Dynamic monitoring of cell mechanical properties using profile microindentation. Sci Rep 6:21529

    Article  CAS  Google Scholar 

  4. Sawicka A, Babataheri A, Dogniaux S, Barakat AI, Gonzalez-Rodriguez D, Hivroz C, Husson J (2017) Micropipette Force Probe to quantify single-cell force generation: application to T cell activation. Mol Biol Cell 28:mbc.E17-06-0385

    Article  Google Scholar 

  5. Colbert M-JJ, Raegen AN, Fradin C, Dalnoki-Veress K (2009) Adhesion and membrane tension of single vesicles and living cells using a micropipette-based technique. Eur Phys J E Soft Matter 30:117–121

    Article  CAS  Google Scholar 

  6. Colbert M-JJ, Brochard-Wyart F, Fradin C, Dalnoki-Veress K (2010) Squeezing and detachment of living cells. Biophys J 99:3555–3562

    Article  CAS  Google Scholar 

  7. Backholm M, Ryu WS, Dalnoki-Veress K (2013) Viscoelastic properties of the nematode Caenorhabditis elegans, a self-similar, shear-thinning worm. Proc Natl Acad Sci 110:4528–4533

    Article  CAS  Google Scholar 

  8. Backholm M, Bäumchen O (2019) Micropipette force sensors for in vivo force measurements on single cells and multicellular microorganisms. Nat Protoc 14:594–615

    Article  CAS  Google Scholar 

  9. Francis GW, Fisher LR, Gamble RA, Gingell D (1987) Direct measurement of cell detachment force on single cells using a new electromechanical method. J Cell Sci 87(Pt 4):519–523

    Article  Google Scholar 

  10. Zak A, Merino-Cortés SV, Sadoun A, Mustapha F, Babataheri A, Dogniaux S, Dupré-Crochet S, Hudik E, He H-T, Barakat AI, Carrasco YR, Hamon Y, Puech P-H, Hivroz C, Nüsse O, Husson J (2021) Rapid viscoelastic changes are a hallmark of early leukocyte activation. Biophys J 120:1692–1704

    Article  CAS  Google Scholar 

  11. Guillou L, Babataheri A, Saitakis M, Bohineust A, Dogniaux S, Hivroz C, Barakat AI, Husson J (2016) T-lymphocyte passive deformation is controlled by unfolding of membrane surface reservoirs. Mol Biol Cell 27:3574–3582

    Article  CAS  Google Scholar 

  12. Samassa F, Ferrari ML, Husson J, Mikhailova A, Porat Z, Sidaner F, Brunner K, Teo T, Frigimelica E, Tinevez J, Sansonetti PJ, Thoulouze M, Phalipon A (2020) Shigella impairs human T lymphocyte responsiveness by hijacking actin cytoskeleton dynamics and T cell receptor vesicular trafficking. Cell Microbiol 22:1–15

    Article  Google Scholar 

  13. Merino-Cortés SV, Gardeta SR, Roman-Garcia S, Martínez-Riaño A, Pineau J, Liebana R, Merida I, Dumenil A-ML, Pierobon P, Husson J, Alarcon B, Carrasco YR (2020) Diacylglycerol kinase ζ promotes actin cytoskeleton remodeling and mechanical forces at the B cell immune synapse. Sci Signal 13:eaaw8214

    Article  Google Scholar 

  14. Zak A, Dupré-Crochet S, Hudik E, Babataheri A, Barakat AIAI, Nüsse O, Husson J (2022) Distinct timing of neutrophil spreading and stiffening during phagocytosis. Biophys J:1–14

    Google Scholar 

  15. Edelstein AD, Tsuchida NA, Pinkard H, Vale RD, Stuurman N (2014) Advanced methods of microscope control using ÎĽManager software. J Biol Methods 1:10

    Article  Google Scholar 

  16. Lam J, Herant M, Dembo M, Heinrich V (2009) Baseline mechanical characterization of J774 macrophages. Biophys J 96:248–254

    Article  CAS  Google Scholar 

  17. Shimamoto Y, Kapoor TM (2012) Microneedle-based analysis of the micromechanics of the metaphase spindle assembled in Xenopus laevis egg extracts. Nat Protoc 7:959–969

    Article  CAS  Google Scholar 

  18. Desprat N, Guiroy A, Asnacios A (2006) Microplates-based rheometer for a single living cell. Rev Sci Instrum 77:055111

    Article  Google Scholar 

  19. Lin DC, Dimitriadis EK, Horkay F (2007) Robust strategies for automated AFM force curve analysis – I. Non-adhesive indentation of soft, inhomogeneous materials. J Biomech Eng 129:430–440

    Article  Google Scholar 

  20. Dimitriadis EK, Horkay F, Maresca J, Kachar B, Chadwick RS (2002) Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys J 82:2798–2810

    Article  CAS  Google Scholar 

  21. Hertz H (1882) Ueber die Berührung fester elastischer Körper. J für die reine und Angew Math 92:156–171

    Google Scholar 

  22. Guevorkian K, Maître J-L (2017) Micropipette aspiration. In: Methods in cell biology. Elsevier, New York, pp 187–201

    Google Scholar 

  23. Bechhoefer J (2005) Feedback for physicists: a tutorial essay on control. Rev Mod Phys 77:783–836

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Husson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Husson, J. (2023). Measuring Cell Mechanical Properties Using Microindentation. In: Zaidel-Bar, R. (eds) Mechanobiology. Methods in Molecular Biology, vol 2600. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2851-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2851-5_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2850-8

  • Online ISBN: 978-1-0716-2851-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics