Skip to main content

Haplotype-Assisted Noninvasive Prenatal Diagnosis of Genetic Diseases by Massively Parallel Sequencing of Maternal Plasma Cell-Free DNA

  • Protocol
  • First Online:
Haplotyping

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2590))

Abstract

Early prenatal diagnosis of genetic diseases allows for timely intervention or prevention of  the diseases in newborns. Conventional prenatal diagnosis of most genetic diseases relies on testing fetal DNA obtained by invasive procedures such as amniocentesis or chorionic villus sampling, which are associated with small risks of fetal loss. Maternal circulating blood contains cell-free DNA (cfDNA) from the fetal genome and can thus be used to noninvasively detect fetal genetic diseases such as chromosomal abnormalities, copy number variants, and single gene diseases. However, due to the presence of a high level of maternal cfDNA in the maternal blood stream, a relative haplotype dosage (RHDO) analysis is required to detect the mutant loci in the fetal genome when performing noninvasive prenatal diagnosis (NIPD) by massively parallel sequencing (MPS) of cfDNA. In this chapter, we describe a protocol utilizing the RHDO strategy for NIPD of any gene of interest associating with single gene diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wieacker P, Steinhard J (2010) The prenatal diagnosis of genetic diseases. Dtsch Arztebl Int 107(48):857–862. https://doi.org/10.3238/arztebl.2010.0857

    Article  PubMed  PubMed Central  Google Scholar 

  2. Evans MI, Andriole S, Evans SM (2015) Genetics: update on prenatal screening and diagnosis. Obstet Gynecol Clin N Am 42(2):193–208. https://doi.org/10.1016/j.ogc.2015.01.011

    Article  Google Scholar 

  3. Levy B, Stosic M (2019) Traditional prenatal diagnosis: past to present. Methods Mol Biol 1885:3–22. https://doi.org/10.1007/978-1-4939-8889-1_1

    Article  CAS  PubMed  Google Scholar 

  4. Zhang H, Gao Y, Jiang F, Fu M, Yuan Y, Guo Y, Zhu Z, Lin M, Liu Q, Tian Z, Zhang H, Chen F, Lau TK, Zhao L, Yi X, Yin Y, Wang W (2015) Non-invasive prenatal testing for trisomies 21, 18 and 13: clinical experience from 146,958 pregnancies. Ultrasound Obstet Gynecol 45(5):530–538. https://doi.org/10.1002/uog.14792

    Article  CAS  PubMed  Google Scholar 

  5. Norton ME, Jacobsson B, Swamy GK, Laurent LC, Ranzini AC, Brar H, Tomlinson MW, Pereira L, Spitz JL, Hollemon D, Cuckle H, Musci TJ, Wapner RJ (2015) Cell-free DNA analysis for noninvasive examination of trisomy. N Engl J Med 372(17):1589–1597. https://doi.org/10.1056/NEJMoa1407349

    Article  CAS  PubMed  Google Scholar 

  6. Ren Y, Zhao J, Li R, Xie Y, Jiang S, Zhou H, Liu H, You Y, Chen F, Wang W, Gao Y, Meng Y, Lu Y (2018) Noninvasive prenatal test for FGFR3-related skeletal dysplasia based on next-generation sequencing and plasma cell-free DNA: test performance analysis and feasibility exploration. Prenat Diagn 38(11):821–828. https://doi.org/10.1002/pd.5334

    Article  CAS  PubMed  Google Scholar 

  7. Zhang J, Li J, Saucier JB, Feng Y, Jiang Y, Sinson J, McCombs AK, Schmitt ES, Peacock S, Chen S, Dai H, Ge X, Wang G, Shaw CA, Mei H, Breman A, Xia F, Yang Y, Purgason A, Pourpak A, Chen Z, Wang X, Wang Y, Kulkarni S, Choy KW, Wapner RJ, Van den Veyver IB, Beaudet A, Parmar S, Wong LJ, Eng CM (2019) Non-invasive prenatal sequencing for multiple Mendelian monogenic disorders using circulating cell-free fetal DNA. Nat Med 25(3):439–447. https://doi.org/10.1038/s41591-018-0334-x

    Article  CAS  PubMed  Google Scholar 

  8. Lam KW, Jiang P, Liao GJ, Chan KC, Leung TY, Chiu RW, Lo YM (2012) Noninvasive prenatal diagnosis of monogenic diseases by targeted massively parallel sequencing of maternal plasma: application to beta-thalassemia. Clin Chem 58(10):1467–1475. https://doi.org/10.1373/clinchem.2012.189589

    Article  CAS  PubMed  Google Scholar 

  9. Papasavva T, van Ijcken WF, Kockx CE, van den Hout MC, Kountouris P, Kythreotis L, Kalogirou E, Grosveld FG, Kleanthous M (2013) Next generation sequencing of SNPs for non-invasive prenatal diagnosis: challenges and feasibility as illustrated by an application to beta-thalassaemia. Eur J Hum Genet 21(12):1403–1410. https://doi.org/10.1038/ejhg.2013.47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lo YM, Chan KC, Sun H, Chen EZ, Jiang P, Lun FM, Zheng YW, Leung TY, Lau TK, Cantor CR, Chiu RW (2010) Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci Transl Med 2(61):61ra91. https://doi.org/10.1126/scitranslmed.3001720

    Article  CAS  PubMed  Google Scholar 

  11. Chen Y, Chen Y, Shi C, Huang Z, Zhang Y, Li S, Li Y, Ye J, Yu C, Li Z, Zhang X, Wang J, Yang H, Fang L, Chen Q (2018) SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience 7(1):1–6. https://doi.org/10.1093/gigascience/gix120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25(14):1754–1760. https://doi.org/10.1093/bioinformatics/btp324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303. https://doi.org/10.1101/gr.107524.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ju, J., Su, F., Chen, C., Sun, J., Gao, Y. (2023). Haplotype-Assisted Noninvasive Prenatal Diagnosis of Genetic Diseases by Massively Parallel Sequencing of Maternal Plasma Cell-Free DNA. In: Peters, B.A., Drmanac, R. (eds) Haplotyping. Methods in Molecular Biology, vol 2590. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2819-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2819-5_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2818-8

  • Online ISBN: 978-1-0716-2819-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics