Skip to main content

miRNA Theranostic Nanoparticles Promote Pancreatic Beta Cell Proliferation in Type 1 Diabetes Model

  • Protocol
  • First Online:
Type-1 Diabetes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2592))

Abstract

Type 1 diabetes (T1D) is a chronic autoimmune disorder which affects the insulin-producing beta cells in the pancreas. A variety of strategies, namely, insulin replacement therapy, engineered vaccines, immunomodulators, etc., have been explored to correct this condition. Recent studies have attributed the development of T1D to the anomalous expression of microRNAs in the pancreatic islets. Here, we describe the protocol for the development of a theranostic approach to modify the expression of aberrant miRNAs. The MRI-based nanodrug consists of superparamagnetic iron oxide nanoparticles conjugated to microRNA-targeting oligonucleotides that can promote proliferation of pancreatic beta cells in a mouse model of T1D. This theranostic approach can successfully serve as a potential therapeutic approach for the targeted treatment of T1D with minimal side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Massaro S, Lorenzoni G (2021) Nanomedicine: a socio-technical system. Technol Forecast Soc Chang 173:121066. https://doi.org/10.1016/j.techfore.2021.121066

    Article  Google Scholar 

  2. Ray S, Li Z, Hsu C-H, Hwang L-P, Lin Y-C, Chou P-T, Lin Y-Y (2018) Dendrimer- and copolymer-based nanoparticles for magnetic resonance cancer theranostics. Theranostics 8(22):6322–6349. https://doi.org/10.7150/thno.27828

    Article  CAS  Google Scholar 

  3. Panwar N, Soehartono AM, Chan KK, Zeng S, Xu G, Qu J, Coquet P, Yong K-T, Chen X (2019) Nanocarbons for biology and medicine: sensing, imaging, and drug delivery. Chem Rev 119(16):9559–9656. https://doi.org/10.1021/acs.chemrev.9b00099

    Article  CAS  Google Scholar 

  4. Bose RJC, Lee S-H, Park H (2016) Biofunctionalized nanoparticles: an emerging drug delivery platform for various disease treatments. Drug Discov Today 21(8):1303–1312. https://doi.org/10.1016/j.drudis.2016.06.005

    Article  CAS  Google Scholar 

  5. Moore C, Jokerst JV (2019) Strategies for image-guided therapy, surgery, and drug delivery using photoacoustic imaging. Theranostics 9(6):1550–1571. https://doi.org/10.7150/thno.32362

    Article  CAS  Google Scholar 

  6. McClements DJ (2018) Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: a review. Adv Colloid Interf Sci 253:1–22. https://doi.org/10.1016/j.cis.2018.02.002

    Article  CAS  Google Scholar 

  7. Gu J, Al-Bayati K, Ho EA (2017) Development of antibody-modified chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier as a strategy for inhibiting HIV replication in astrocytes. Drug Deliv Transl Res 7(4):497–506. https://doi.org/10.1007/s13346-017-0368-5

    Article  CAS  Google Scholar 

  8. Yuan P, Mao X, Wu X, Liew SS, Li L, Yao SQ (2019) Mitochondria-targeting, intracellular delivery of native proteins using biodegradable silica nanoparticles. Angew Chem Int Ed 58(23):7657–7661. https://doi.org/10.1002/anie.201901699

    Article  CAS  Google Scholar 

  9. Man F, Lammers T, de Rosales TM (2018) Imaging nanomedicine-based drug delivery: a review of clinical studies. Mol Imaging Biol 20(5):683–695. https://doi.org/10.1007/s11307-018-1255-2

    Article  Google Scholar 

  10. Pérez-Medina C, Teunissen AJP, Kluza E, Mulder WJM, van der Meel R (2020) Nuclear imaging approaches facilitating nanomedicine translation. Adv Drug Deliv Rev 154–155:123–141. https://doi.org/10.1016/j.addr.2020.07.017

    Article  CAS  Google Scholar 

  11. Murakami T, Fujimoto H, Inagaki N (2021) Non-invasive Beta-cell Imaging: Visualization, Quantification, and Beyond. Front Endocrinol 12(791). https://doi.org/10.3389/fendo.2021.714348

  12. DiMeglio LA, Evans-Molina C, Oram RA (2018) Type 1 diabetes. Lancet 391(10138):2449–2462. https://doi.org/10.1016/S0140-6736(18)31320-5

    Article  Google Scholar 

  13. Katsarou A, Gudbjörnsdottir S, Rawshani A, Dabelea D, Bonifacio E, Anderson BJ, Jacobsen LM, Schatz DA, Lernmark Å (2017) Type 1 diabetes mellitus. Nature Rev Dis Primers 3(1):17016. https://doi.org/10.1038/nrdp.2017.16

    Article  Google Scholar 

  14. Vetere A, Choudhary A, Burns SM, Wagner BK (2014) Targeting the pancreatic β-cell to treat diabetes. Nat Rev Drug Discov 13(4):278–289. https://doi.org/10.1038/nrd4231

    Article  CAS  Google Scholar 

  15. Assmann TS, Recamonde-Mendoza M, De Souza BM, Crispim D (2017) MicroRNA expression profiles and type 1 diabetes mellitus: systematic review and bioinformatic analysis. Endocrine Connect 6(8):773–790. https://doi.org/10.1530/ec-17-0248

    Article  CAS  Google Scholar 

  16. Hanna J, Hossain GS, Kocerha J (2019) The potential for microRNA therapeutics and clinical research. Front Genet 10(478). https://doi.org/10.3389/fgene.2019.00478

  17. Lu TX, Rothenberg ME (2018) MicroRNA. J Allergy Clin Immunol 141(4):1202–1207. https://doi.org/10.1016/j.jaci.2017.08.034

    Article  CAS  Google Scholar 

  18. Kozomara A, Birgaoanu M, Griffiths-Jones S (2018) miRBase: from microRNA sequences to function. Nucleic Acids Res 47(D1):D155–D162. https://doi.org/10.1093/nar/gky1141

    Article  CAS  Google Scholar 

  19. Belgardt B-F, Ahmed K, Spranger M, Latreille M, Denzler R, Kondratiuk N, von Meyenn F, Villena FN, Herrmanns K, Bosco D, Kerr-Conte J, Pattou F, Rülicke T, Stoffel M (2015) The microRNA-200 family regulates pancreatic beta cell survival in type 2 diabetes. Nat Med 21(6):619–627. https://doi.org/10.1038/nm.3862

    Article  CAS  Google Scholar 

  20. Osmai M, Osmai Y, Bang-Berthelsen CH, Pallesen EMH, Vestergaard AL, Novotny GW, Pociot F, Mandrup-Poulsen T (2016) MicroRNAs as regulators of beta-cell function and dysfunction. Diabetes Metab Res Rev 32(4):334–349. https://doi.org/10.1002/dmrr.2719

    Article  CAS  Google Scholar 

  21. Özcan S (2014) Minireview: microRNA function in pancreatic β cells. Mol Endocrinol 28(12):1922–1933. https://doi.org/10.1210/me.2014-1306

    Article  CAS  Google Scholar 

  22. Song I, Roels S, Martens GA, Bouwens L (2017) Circulating microRNA-375 as biomarker of pancreatic beta cell death and protection of beta cell mass by cytoprotective compounds. PLoS ONE 12(10):e0186480. https://doi.org/10.1371/journal.pone.0186480

    Article  CAS  Google Scholar 

  23. Ofori JK, Salunkhe VA, Bagge A, Vishnu N, Nagao M, Mulder H, Wollheim CB, Eliasson L, Esguerra JLS (2017) Elevated miR-130a/miR130b/miR-152 expression reduces intracellular ATP levels in the pancreatic beta cell. Sci Rep 7(1):44986. https://doi.org/10.1038/srep44986

    Article  CAS  Google Scholar 

  24. Ruan D, Liu Y, Wang X, Yang D, Sun Y (2019) miR-149-5p protects against high glucose-induced pancreatic beta cell apoptosis via targeting the BH3-only protein BIM. Exp Mol Pathol 110:104279. https://doi.org/10.1016/j.yexmp.2019.104279

    Article  CAS  Google Scholar 

  25. Aghaei M, Khodadadian A, Elham K-N, Nazari M, Babakhanzadeh E (2020) Major miRNA involved in insulin secretion and production in beta-cells. Int J Gen Med 13:89–97. https://doi.org/10.2147/IJGM.S249011

    Article  CAS  Google Scholar 

  26. Dwan BF, Moore A, Wang P (2019) Nucleic acid-based theranostics in type 1 diabetes. Transl Res 214:50–61. https://doi.org/10.1016/j.trsl.2019.08.006

    Article  CAS  Google Scholar 

  27. Xu L, Li Y, Yin L, Qi Y, Sun H, Sun P, Xu M, Tang Z, Peng J (2018) miR-125a-5p ameliorates hepatic glycolipid metabolism disorder in type 2 diabetes mellitus through targeting of STAT3. Theranostics 8(20):5593–5609. https://doi.org/10.7150/thno.27425

    Article  CAS  Google Scholar 

  28. Knerr L, Prakash TP, Lee R, Drury Iii WJ, Nikan M, Fu W, Pirie E, Maria LD, Valeur E, Hayen A, Ölwegård-Halvarsson M, Broddefalk J, Ämmälä C, Østergaard ME, Meuller J, Sundström L, Andersson P, Janzén D, Jansson-Löfmark R, Seth PP, Andersson S (2021) Glucagon like peptide 1 receptor agonists for targeted delivery of antisense oligonucleotides to pancreatic beta cell. J Am Chem Soc 143(9):3416–3429. https://doi.org/10.1021/jacs.0c12043

    Article  CAS  Google Scholar 

  29. Wang P, Liu Q, Zhao H, Bishop JO, Zhou G, Olson LK, Moore A (2020) miR-216a-targeting theranostic nanoparticles promote proliferation of insulin-secreting cells in type 1 diabetes animal model. Sci Rep 10(1):5302. https://doi.org/10.1038/s41598-020-62269-4

    Article  CAS  Google Scholar 

  30. Medarova Z, Evgenov NV, Dai G, Bonner-Weir S, Moore A (2006) In vivo multimodal imaging of transplanted pancreatic islets. Nat Protoc 1(1):429–435. https://doi.org/10.1038/nprot.2006.63

    Article  CAS  Google Scholar 

  31. Yoo B, Kavishwar A, Ross A, Wang P, Tabassum DP, Polyak K, Barteneva N, Petkova V, Pantazopoulos P, Tena A, Moore A, Medarova Z (2015) Combining miR-10b–targeted nanotherapy with low-dose doxorubicin elicits durable regressions of metastatic breast cancer. Cancer Res 75(20):4407–4415. https://doi.org/10.1158/0008-5472.can-15-0888

    Article  CAS  Google Scholar 

  32. Yoo B, Kavishwar A, Wang P, Ross A, Pantazopoulos P, Dudley M, Moore A, Medarova Z (2017) Therapy targeted to the metastatic niche is effective in a model of stage IV breast cancer. Sci Rep 7(1):45060. https://doi.org/10.1038/srep45060

    Article  CAS  Google Scholar 

  33. Kumar P, Nagarajan A, Uchil PD (2018) Analysis of cell viability by the MTT assay. Cold Spring Harb Protoc 2018(6):pdb.prot095505. https://doi.org/10.1101/pdb.prot095505

    Article  Google Scholar 

  34. Wang P, Yigit MV, Medarova Z, Wei L, Dai G, Schuetz C, Moore A (2011) Combined small interfering RNA therapy and in vivo magnetic resonance imaging in islet transplantation. Diabetes 60(2):565–571. https://doi.org/10.2337/db10-1400

    Article  CAS  Google Scholar 

  35. Wang P, Yigit MV, Ran C, Ross A, Wei L, Dai G, Medarova Z, Moore A (2012) A theranostic small interfering RNA nanoprobe protects pancreatic islet grafts from adoptively transferred immune rejection. Diabetes 61(12):3247–3254. https://doi.org/10.2337/db12-0441

    Article  CAS  Google Scholar 

  36. Jiang X, Shan A, Su Y, Cheng Y, Gu W, Wang W, Ning G, Cao Y (2015) miR-144/451 promote cell proliferation via targeting PTEN/AKT pathway in insulinomas. Endocrinology 156(7):2429–2439. https://doi.org/10.1210/en.2014-1966

    Article  CAS  Google Scholar 

  37. Deeds MC, Anderson JM, Armstrong AS, Gastineau DA, Hiddinga HJ, Jahangir A, Eberhardt NL, Kudva YC (2011) Single dose streptozotocin-induced diabetes: considerations for study design in islet transplantation models. Lab Anim 45(3):131–140. https://doi.org/10.1258/la.2010.010090

    Article  CAS  Google Scholar 

  38. Wang P, Ross A, Yoo B, Yang J, Farrar C, Ran C, Pantazopoulos P, Medarova Z, Moore A (2017) Magnetic resonance imaging of intra-pancreatic ductal nanoparticle delivery to islet cells. Diabetes Metab Res Rev 33(5):e2881. https://doi.org/10.1002/dmrr.2881

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anna Moore or Ping Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nigam, S., Moore, A., Wang, P. (2023). miRNA Theranostic Nanoparticles Promote Pancreatic Beta Cell Proliferation in Type 1 Diabetes Model. In: Moore, A., Wang, P. (eds) Type-1 Diabetes. Methods in Molecular Biology, vol 2592. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2807-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2807-2_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2806-5

  • Online ISBN: 978-1-0716-2807-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics