Skip to main content

Bioinformatical Approaches to the Discovery and Classification of Novel Deubiquitinases

  • Protocol
  • First Online:
Deubiquitinases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2591))

Abstract

Deubiquitinating enzymes (DUBs) are active at multiple levels of the eukaryotic ubiquitin system. DUBs are important for ubiquitin activation and maintaining cellular ubiquitin levels but can also edit or dissolve ubiquitin chains or deconjugate ubiquitin from substrates. Eukaryotic DUBs can be grouped into seven molecular classes, most of which enzymes are cysteine proteases assuming the papain fold. In recent years, an ever-increasing number of pathogen-encoded DUBs have been characterized, which are active inside the host cell and help the pathogens to evade the defense response. At first sight, bacterial and viral DUBs appear to be very different from their eukaryotic counterparts, making them hard to identify by bioinformatic methods. However, apart from very few exceptions, bacterial and viral DUBs are distantly related to eukaryotic DUB classes and possess several hallmarks that can be used to identify high-confidence DUB candidates from pathogen genomes – even in the complete absence of biochemical or functional annotation. This chapter addresses bioinformatical DUB discovery approaches based on a previously published analysis of DUB evolution. The core set of bioinformatical tools required for this endeavor are freely accessible and do not require a particular bioinformatics infrastructure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rape M (2018) Ubiquitylation at the crossroads of development and disease. Nat Rev Mol Cell Biol 19(1):59–70. https://doi.org/10.1038/nrm.2017.83

    Article  CAS  PubMed  Google Scholar 

  2. Clague MJ, Urbe S, Komander D (2019) Breaking the chains: deubiquitylating enzyme specificity begets function. Nat Rev Mol Cell Biol 20(6):338–352. https://doi.org/10.1038/s41580-019-0099-1

    Article  CAS  PubMed  Google Scholar 

  3. Hermanns T, Hofmann K (2019) Bacterial DUBs: deubiquitination beyond the seven classes. Biochem Soc Trans 47(6):1857–1866. https://doi.org/10.1042/BST20190526

    Article  CAS  PubMed  Google Scholar 

  4. Proulx J, Borgmann K, Park IW (2021) Role of virally-encoded deubiquitinating enzymes in regulation of the virus life cycle. Int J Mol Sci 22(9). https://doi.org/10.3390/ijms22094438

  5. Borodovsky A, Ovaa H, Kolli N, Gan-Erdene T, Wilkinson KD, Ploegh HL, Kessler BM (2002) Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. Chem Biol 9(10):1149–1159

    Article  CAS  PubMed  Google Scholar 

  6. Scheel H, Tomiuk S, Hofmann K (2003) Elucidation of ataxin-3 and ataxin-7 function by integrative bioinformatics. Hum Mol Genet 12(21):2845–2852. https://doi.org/10.1093/hmg/ddg297

    Article  CAS  PubMed  Google Scholar 

  7. Maytal-Kivity V, Reis N, Hofmann K, Glickman MH (2002) MPN+, a putative catalytic motif found in a subset of MPN domain proteins from eukaryotes and prokaryotes, is critical for Rpn11 function. BMC Biochem 3:28. https://doi.org/10.1186/1471-2091-3-28

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hermanns T, Woiwode I, Guerreiro RF, Vogt R, Lammers M, Hofmann K (2020) An evolutionary approach to systematic discovery of novel deubiquitinases, applied to Legionella. Life Sci Alliance 3(9). https://doi.org/10.26508/lsa.202000838

  9. Hermanns T, Pichlo C, Woiwode I, Klopffleisch K, Witting KF, Ovaa H, Baumann U, Hofmann K (2018) A family of unconventional deubiquitinases with modular chain specificity determinants. Nat Commun 9(1):799. https://doi.org/10.1038/s41467-018-03148-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Abdul Rehman SA, Kristariyanto YA, Choi SY, Nkosi PJ, Weidlich S, Labib K, Hofmann K, Kulathu Y (2016) MINDY-1 is a member of an evolutionarily conserved and structurally distinct new family of deubiquitinating enzymes. Mol Cell 63(1):146–155. https://doi.org/10.1016/j.molcel.2016.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer EL, Eddy SR, Bateman A (2011) The Pfam protein families database. Nucleic Acids Res 38(Database issue):D211–D222

    Google Scholar 

  12. Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty L, Duquenne L, Finn RD, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Laugraud A, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, Mistry J, Mitchell A, Mulder N, Natale D, Orengo C, Quinn AF, Selengut JD, Sigrist CJ, Thimma M, Thomas PD, Valentin F, Wilson D, Wu CH, Yeats C (2009) InterPro: the integrative protein signature database. Nucleic Acids Res 37(Database issue):D211–D215

    Article  CAS  PubMed  Google Scholar 

  13. Schubert AF, Nguyen JV, Franklin TG, Geurink PP, Roberts CG, Sanderson DJ, Miller LN, Ovaa H, Hofmann K, Pruneda JN, Komander D (2020) Identification and characterization of diverse OTU deubiquitinases in bacteria. EMBO J 39(15):e105127. https://doi.org/10.15252/embj.2020105127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pruneda JN, Durkin CH, Geurink PP, Ovaa H, Santhanam B, Holden DW, Komander D (2016) The molecular basis for ubiquitin and ubiquitin-like specificities in bacterial effector proteases. Mol Cell 63(2):261–276. https://doi.org/10.1016/j.molcel.2016.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bailey-Elkin BA, Knaap RCM, Kikkert M, Mark BL (2017) Structure and function of viral deubiquitinating enzymes. J Mol Biol 429(22):3441–3470. https://doi.org/10.1016/j.jmb.2017.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zong Z, Zhang Z, Wu L, Zhang L, Zhou F (2021) The functional deubiquitinating enzymes in control of innate antiviral immunity. Adv Sci (Weinh) 8(2):2002484. https://doi.org/10.1002/advs.202002484

    Article  CAS  Google Scholar 

  17. Gastaldello S, Hildebrand S, Faridani O, Callegari S, Palmkvist M, Di Guglielmo C, Masucci MG (2010) A deneddylase encoded by Epstein-Barr virus promotes viral DNA replication by regulating the activity of cullin-RING ligases. Nat Cell Biol 12(4):351–361. https://doi.org/10.1038/ncb2035

    Article  CAS  PubMed  Google Scholar 

  18. Schlieker C, Weihofen WA, Frijns E, Kattenhorn LM, Gaudet R, Ploegh HL (2007) Structure of a herpesvirus-encoded cysteine protease reveals a unique class of deubiquitinating enzymes. Mol Cell 25(5):677–687. https://doi.org/10.1016/j.molcel.2007.01.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596(7873):583–589. https://doi.org/10.1038/s41586-021-03819-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  21. Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD (2018) HMMER web server: 2018 update. Nucleic Acids Res 46(W1):W200–W204. https://doi.org/10.1093/nar/gky448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780. https://doi.org/10.1093/molbev/mst010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9):1189–1191. https://doi.org/10.1093/bioinformatics/btp033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Soding J (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21(7):951–960. https://doi.org/10.1093/bioinformatics/bti125

    Article  PubMed  Google Scholar 

  25. Zimmermann L, Stephens A, Nam SZ, Rau D, Kubler J, Lozajic M, Gabler F, Soding J, Lupas AN, Alva V (2018) A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol 430(15):2237–2243. https://doi.org/10.1016/j.jmb.2017.12.007

    Article  CAS  PubMed  Google Scholar 

  26. Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, Wang J, Cong Q, Kinch LN, Schaeffer RD, Millan C, Park H, Adams C, Glassman CR, DeGiovanni A, Pereira JH, Rodrigues AV, van Dijk AA, Ebrecht AC, Opperman DJ, Sagmeister T, Buhlheller C, Pavkov-Keller T, Rathinaswamy MK, Dalwadi U, Yip CK, Burke JE, Garcia KC, Grishin NV, Adams PD, Read RJ, Baker D (2021) Accurate prediction of protein structures and interactions using a three-track neural network. Science 373(6557):871–876. https://doi.org/10.1126/science.abj8754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Holm L (2019) Benchmarking fold detection by DaliLite v.5. Bioinformatics 35(24):5326–5327. https://doi.org/10.1093/bioinformatics/btz536

    Article  CAS  PubMed  Google Scholar 

  28. Wan M, Wang X, Huang C, Xu D, Wang Z, Zhou Y, Zhu Y (2019) A bacterial effector deubiquitinase specifically hydrolyses linear ubiquitin chains to inhibit host inflammatory signalling. Nat Microbiol 4(8):1282–1293. https://doi.org/10.1038/s41564-019-0454-1

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the DFG grant HO 3783/3-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kay Hofmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hermanns, T., Hofmann, K. (2023). Bioinformatical Approaches to the Discovery and Classification of Novel Deubiquitinases. In: Maupin-Furlow, J., Edelmann, M.J. (eds) Deubiquitinases. Methods in Molecular Biology, vol 2591. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2803-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2803-4_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2802-7

  • Online ISBN: 978-1-0716-2803-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics