Skip to main content

A MATQ-seq-Based Protocol for Single-Cell RNA-seq in Bacteria

  • Protocol
  • First Online:
Single Cell Transcriptomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2584))

Abstract

Microbes exhibit an extraordinary capacity to adapt their physiology to different environments using phenotypic heterogeneity. However, the majority of gene regulation studies are conducted in bulk reflecting only averaged gene expression levels across millions of cells. Bacterial single-cell RNA-seq (scRNA-seq) can overcome this by enabling whole transcriptome and unbiased analysis of microbes at the single-cell level. Here, we describe a detailed workflow of single-cell RNA-seq based on the multiple annealing and dC-tailing-based quantitative single-cell RNA-seq (MATQ-seq) protocol. Following adjustments to the original eukaryotic protocol, the workflow was applied to two major human pathogens Salmonella enterica serovar Typhimurium (henceforth Salmonella) and Pseudomonas aeruginosa (henceforth Pseudomonas). The development of bacterial scRNA-seq protocols offers promising avenues to explore the molecular programs underlying phenotypic heterogeneity on the transcriptome level in different settings such as infection, persistence, ecology, and biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ackermann M (2015) A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol 13(8):497–508. https://doi.org/10.1038/nrmicro3491

    Article  CAS  Google Scholar 

  2. Beebout CJ, Eberly AR, Werby SH, Reasoner SA, Brannon JR, De S, Fitzgerald MJ, Huggins MM, Clayton DB, Cegelski L, Hadjifrangiskou M (2019) Respiratory heterogeneity shapes biofilm formation and host colonization in Uropathogenic Escherichia coli. MBio 10(2). https://doi.org/10.1128/mBio.02400-18

  3. Yannarell SM, Velickovic D, Anderton CR, Shank EA (2021) Direct visualization of chemical cues and cellular phenotypes throughout Bacillus subtilis biofilms. mSystems 6(6):e0103821. https://doi.org/10.1128/mSystems.01038-21

    Article  Google Scholar 

  4. Lyu Z, Yang A, Villanueva P, Singh A, Ling J (2021) Heterogeneous flagellar expression in single Salmonella cells promotes diversity in antibiotic tolerance. mBio 12:e0237421. https://doi.org/10.1128/mBio.02374-21

  5. Jones EC, Uphoff S (2021) Single-molecule imaging of LexA degradation in Escherichia coli elucidates regulatory mechanisms and heterogeneity of the SOS response. Nat Microbiol 6(8):981–990. https://doi.org/10.1038/s41564-021-00930-y

    Article  CAS  Google Scholar 

  6. Merida-Floriano A, Rowe WPM, Casadesus J (2021) Genome-wide identification and expression analysis of SOS response genes in Salmonella enterica Serovar Typhimurium. Cells 10(4):943. https://doi.org/10.3390/cells10040943

  7. Roche B, Bumann D (2021) Single-cell reporters for pathogen responses to antimicrobial host attacks. Curr Opin Microbiol 59:16–23. https://doi.org/10.1016/j.mib.2020.07.013

    Article  CAS  Google Scholar 

  8. Tanay A, Regev A (2017) Scaling single-cell genomics from phenomenology to mechanism. Nature 541(7637):331–338. https://doi.org/10.1038/nature21350

    Article  CAS  Google Scholar 

  9. Imdahl F, Saliba AE (2020) Advances and challenges in single-cell RNA-seq of microbial communities. Curr Opin Microbiol 57:102–110. https://doi.org/10.1016/j.mib.2020.10.001

    Article  CAS  Google Scholar 

  10. Avital G, Avraham R, Fan A, Hashimshony T, Hung DT, Yanai I (2017) scDual-Seq: mapping the gene regulatory program of Salmonella infection by host and pathogen single-cell RNA-sequencing. Genome Biol 18(1):200. https://doi.org/10.1186/s13059-017-1340-x

    Article  CAS  Google Scholar 

  11. Betin V, Penaranda C, Bandyopadhyay N, Yang R, Abitua A, Bhattacharyya RP, Fan A, Avraham R, Livny J, Shoresh N, Hung DT (2019) Hybridization-based capture of pathogen mRNA enables paired host-pathogen transcriptional analysis. Sci Rep 9(1):19244. https://doi.org/10.1038/s41598-019-55633-6

    Article  CAS  Google Scholar 

  12. Kuchina A, Brettner LM, Paleologu L, Roco CM, Rosenberg AB, Carignano A, Kibler R, Hirano M, RW DP, Seelig G (2021) Microbial single-cell RNA sequencing by split-pool barcoding. Science 371(6531):eaba5257. https://doi.org/10.1126/science.aba5257

  13. Blattman SB, Jiang W, Oikonomou P, Tavazoie S (2020) Prokaryotic single-cell RNA sequencing by in situ combinatorial indexing. Nat Microbiol 5(10):1192–1201. https://doi.org/10.1038/s41564-020-0729-6

    Article  CAS  Google Scholar 

  14. Imdahl F, Vafadarnejad E, Homberger C, Saliba AE, Vogel J (2020) Single-cell RNA-sequencing reports growth-condition-specific global transcriptomes of individual bacteria. Nat Microbiol 5(10):1202–1206. https://doi.org/10.1038/s41564-020-0774-1

    Article  CAS  Google Scholar 

  15. Sheng K, Cao W, Niu Y, Deng Q, Zong C (2017) Effective detection of variation in single-cell transcriptomes using MATQ-seq. Nat Methods 14(3):267–270. https://doi.org/10.1038/nmeth.4145

    Article  CAS  Google Scholar 

  16. Zong C, Lu S, Chapman AR, Xie XS (2012) Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338(6114):1622–1626. https://doi.org/10.1126/science.1229164

    Article  CAS  Google Scholar 

  17. Kroeger C, Colgan A, Srikumar S, Handler K, Sivasankaran SK, Hammarlof DL, Canals R, Grissom JE, Conway T, Hokamp K, Hinton JC (2013) An infection-relevant transcriptomic compendium for Salmonella enterica Serovar Typhimurium. Cell Host Microbe 14(6):683–695. https://doi.org/10.1016/j.chom.2013.11.010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Vogel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Homberger, C., Saliba, AE., Vogel, J. (2023). A MATQ-seq-Based Protocol for Single-Cell RNA-seq in Bacteria. In: Calogero, R.A., Benes, V. (eds) Single Cell Transcriptomics. Methods in Molecular Biology, vol 2584. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2756-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2756-3_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2755-6

  • Online ISBN: 978-1-0716-2756-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics