Skip to main content

Need for Methods to Investigate Endocannabinoid Signaling

  • Protocol
  • First Online:
Endocannabinoid Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2576))

Abstract

Endocannabinoids (eCBs) are endogenous lipids able to bind to cannabinoid receptors, the primary molecular targets of the cannabis (Cannabis sativa) active principle Δ9-tetrahydrocannabinol. During the last 20 years, several N-acylethanolamines and acylesters have been shown to act as eCBs, and a complex array of receptors, metabolic enzymes, and transporters (that altogether form the so-called “eCB system”) has been shown to finely tune their manifold biological activities. It appears now urgent to develop methods and protocols that allow to assay in a specific and quantitative manner the distinct components of the eCB system and that can properly localize them within the cell. A brief overview of eCBs and of the proteins that bind, transport, and metabolize these lipids is presented here, in orderto put in a better perspective, the relevance of methodologies that help to disclose molecular details of eCB signaling in health and disease. Proper methodological approaches form also the basis for a more rationale and effective drug design and therapeutic strategy to combat human disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pertwee RG, Howlett AC, Abood ME et al (2010) International union of basic and clinical pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol Rev 62:588–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. ElSohly MA, Radwan MM, Gul W et al (2017) Phytochemistry of Cannabis sativa L. Prog Chem Org Nat Prod 103:1–36

    CAS  PubMed  Google Scholar 

  3. Friedman D, French JA, Maccarrone M (2019) Safety, efficacy, and mechanisms of action of cannabinoids in neurological disorders. Lancet Neurol 18:504–512

    Article  CAS  PubMed  Google Scholar 

  4. Radwan MM, Chandra S, Gul S, ElSohly MA (2021) Cannabinoids, phenolics, terpenes and alkaloids of Cannabis. Molecules 26:2774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Maccarrone M, Guzmán M, Mackie K et al (2014) Programming of neural cells by (endo)cannabinoids: from physiological rules to emerging therapies. Nat Rev Neurosci 15:786–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Di Marzo V, Stella N, Zimmer A (2015) Endocannabinoid signalling and the deteriorating brain. Nat Rev Neurosci 16:30–42

    Article  PubMed  PubMed Central  Google Scholar 

  7. Di Patrizio NV, Piomelli D (2012) The thrifty lipids: endocannabinoids and the neural control of energy conservation. Trends Neurosci 35:403–411

    Article  Google Scholar 

  8. Maccarrone M (2020) Missing pieces to the endocannabinoid puzzle. Trends Mol Med 26:263–272

    Article  CAS  PubMed  Google Scholar 

  9. Artmann A, Petersen G, Hellgren LI et al (2008) Influence of dietary fatty acids on endocannabinoid and N-acylethanolamine levels in rat brain, liver and small intestine. Biochim Biophys Acta 1781:200–212

    Article  CAS  PubMed  Google Scholar 

  10. Lucanic M, Held JM, Vantipalli MC et al (2011) N-acylethanolamine signalling mediates the effect of diet on lifespan in Caenorhabditis elegans. Nature 473:226–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brown I, Cascio MG, Wahle KW et al (2010) Cannabinoid receptor-dependent and -independent anti-proliferative effects of omega-3 ethanolamides in androgen receptor-positive and -negative prostate cancer cell lines. Carcinogenesis 31:1584–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tyrtyshnaia A, Konovalova S, Bondar A et al (2021) Anti-inflammatory activity of N-docosahexaenoylethanolamine and N-eicosapentaenoylethanolamine in a mouse model of lipopolysaccharide-induced neuroinflammation. Int J Mol Sci 22:10728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ueda N, Tsuboi K, Uyama T (2013) Metabolism of endocannabinoids and related N-acylethanolamines: canonical and alternative pathways. FEBS J 280:1874–1894

    Article  CAS  PubMed  Google Scholar 

  14. Fezza F, Bari M, Florio R et al (2014) Endocannabinoids, related compounds and their metabolic routes. Molecules 19:17078–17106

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cristino L, Bisogno T, Di Marzo V (2020) Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat Rev Neurol 16:9–29

    Article  PubMed  Google Scholar 

  16. Jin XH, Uyama T, Wang J et al (2009) cDNA cloning and characterization of human and mouse Ca2+-independent phosphatidylethanolamine N-acyltransferases. Biochim Biophys Acta 1791:32–38

    Article  CAS  PubMed  Google Scholar 

  17. Hussain Z, Uyama T, Tsuboi K, Ueda N (2017) Mammalian enzymes responsible for the biosynthesis of N-acylethanolamines. Biochim Biophys Acta Mol Cell Biol Lipids 1862:1546–1561

    Article  CAS  PubMed  Google Scholar 

  18. Bisogno T, Howell F, Williams G et al (2003) Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J Cell Biol 163:463–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chicca A, Marazzi J, Nicolussi S et al (2012) Evidence for bidirectional endocannabinoid transport across cell membranes. J Biol Chem 287:34660–34682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McKinney K, Cravatt BF (2005) Structure and function of fatty acid amide hydrolase. Annu Rev Biochem 74:411–432

    Article  CAS  PubMed  Google Scholar 

  21. Fezza F, De Simone C, Amadio D et al (2008) Fatty acid amide hydrolase: a gate-keeper of the endocannabinoid system. Subcell Biochem 49:101–132

    Article  PubMed  Google Scholar 

  22. Tsuboi K, Takezaki N, Ueda N (2007) The N-acylethanolamine-hydrolyzing acid amidase (NAAA). Chem Biodiv 4:1914–1925

    Article  CAS  Google Scholar 

  23. Miller MR, Mannowetz N, Iavarone AT et al (2016) Unconventional endocannabinoid signaling governs sperm activation via the sex hormone progesterone. Science 352:555–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Blankman JL, Simon GM, Cravatt BF (2007) A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem Biol 14:1347–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rouzer CA, Marnett LJ (2011) Endocannabinoid oxygenation by cyclooxygenases, lipoxygenases, and cytochromes P450: cross-talk between the eicosanoid and endocannabinoid signaling pathways. Chem Rev 111:5899–5921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Van der Stelt M, van Kuik JA, Bari M et al (2002) Oxygenated metabolites of anandamide and 2-arachidonoylglycerol: conformational analysis and interaction with cannabinoid receptors, membrane transporter, and fatty acid amide hydrolase. J Med Chem 45:3709–3720

    Article  PubMed  Google Scholar 

  27. Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294:1871–1875

    Article  CAS  PubMed  Google Scholar 

  28. Snider NT, Walker VJ, Hollenberg PF (2010) Oxidation of the endogenous cannabinoid arachidonoyl ethanolamide by the cytochrome P450 monooxygenases: physiological and pharmacological implications. Pharmacol Rev 62:136–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maccarrone M, Dainese E, Oddi S (2010) Intracellular trafficking of anandamide: new concepts for signaling. Trends Biochem Sci 35:601–608

    Article  CAS  PubMed  Google Scholar 

  30. Oddi S, Fezza F, Pasquariello N et al (2008) Evidence for the intracellular accumulation of anandamide in adiposomes. Cell Mol Life Sci 65:840–850

    Article  CAS  PubMed  Google Scholar 

  31. Kaczocha M, Vivieca S, Sun J et al (2012) Fatty acid-binding proteins transport N-acylethanolamines to nuclear receptors and are targets of endocannabinoid transport inhibitors. J Biol Chem 287:3415–3424

    Article  CAS  PubMed  Google Scholar 

  32. Mechoulam R, Hanuš LO, Pertwee R et al (2014) Early phytocannabinoid chemistry to endocannabinoids and beyond. Nat Rev Neurosci 15:757–764

    Article  CAS  PubMed  Google Scholar 

  33. Soltesz I, Alger BE, Kano M et al (2015) Weeding out bad waves: towards selective cannabinoid circuit control in epilepsy. Nat Rev Neurosci 16:264–277

    Article  CAS  PubMed  Google Scholar 

  34. Maccarrone M, Bab I, Bíró T et al (2015) Endocannabinoid signaling at the periphery: 50 years after THC. Trends Pharmacol Sci 36:277–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maccarrone M, Rapino C, Francavilla F, Barbonetti A (2021) Cannabinoid signalling and effects of cannabis on the male reproductive system. Nat Rev Urol 18:19–32

    Article  CAS  PubMed  Google Scholar 

  36. Di Marzo V, De Petrocellis L (2010) Endocannabinoids as regulators of transient receptor potential (TRP) channels: A further opportunity to develop new endocannabinoid-based therapeutic drugs. Curr Med Chem 17:1430–1449

    Article  PubMed  Google Scholar 

  37. Zygmunt PM, Ermund A, Movahed P et al (2013) Monoacylglycerols activate TRPV1-a link between phospholipase C and TRPV1. PLoS One 8:e81618

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pistis M, Melis M (2010) From surface to nuclear receptors: the endocannabinoid family extends its assets. Curr Med Chem 17:1450–1467

    Article  CAS  PubMed  Google Scholar 

  39. Ross RA (2009) The enigmatic pharmacology of GPR55. Trends Pharmacol Sci 30:156–163

    Article  CAS  PubMed  Google Scholar 

  40. Im DS (2021) GPR119 and GPR55 as receptors for fatty acid ethanolamides, oleoylethanolamide and palmitoylethanolamide. Int J Mol Sci 22:1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I thank Dr. Filomena Fezza and Monica Bari (Tor Vergata University of Rome, Rome, Italy) for kindly preparing the artwork. This investigation was partly supported by funding from the Italian Ministero dell’Università e della Ricerca (MUR) under a competitive PRIN 2017 grant and from Università degli Studi dell’Aquila under intramural competitive grants “RIA 2021” and “Progetti di Ricerca di Ateneo 2021.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Maccarrone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Maccarrone, M. (2023). Need for Methods to Investigate Endocannabinoid Signaling. In: Maccarrone, M. (eds) Endocannabinoid Signaling. Methods in Molecular Biology, vol 2576. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2728-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2728-0_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2727-3

  • Online ISBN: 978-1-0716-2728-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics