Skip to main content

A Primer on Deep Learning-Based Cellular Image Classification of Changes in the Spatial Distribution of the Golgi Apparatus After Experimental Manipulation

  • Protocol
  • First Online:
Golgi

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2557))

  • 1309 Accesses

Abstract

The visual classification of cell images according to differences in the spatial patterns of subcellular structure is an important methodology in cell and developmental biology. Experimental perturbation of cell function can induce changes in the spatial distribution of organelles and their associated markers or labels. Here, we demonstrate how to achieve accurate, unbiased, high-throughput image classification using an artificial intelligence (AI) algorithm. We show that a convolutional neural network (CNN) algorithm can classify distinct patterns of Golgi images after drug or siRNA treatments, and we review our methods from cell preparation to image acquisition and CNN analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meijering E (2020) A bird’s-eye view of deep learning in bioimage analysis. Comput Struct Biotechnol J 18:2312–2325. https://doi.org/10.1016/j.csbj.2020.08.003

    Article  CAS  Google Scholar 

  2. Moen E, Bannon D, Kudo T, Graf W, Covert M, Van Valen D (2019) Deep learning for cellular image analysis. Nat Methods 16(12):1233–1246. https://doi.org/10.1038/s41592-019-0403-1

    Article  CAS  Google Scholar 

  3. Nagao Y, Sakamoto M, Chinen T, Okada Y, Takao D (2020) Robust classification of cell cycle phase and biological feature extraction by image-based deep learning. Mol Biol Cell 31(13):1346–1354. https://doi.org/10.1091/mbc.E20-03-0187

    Article  CAS  Google Scholar 

  4. Koreishi M, Gniadek TJ, Yu S, Masuda J, Honjo Y, Satoh A (2013) The golgin tether giantin regulates the secretory pathway by controlling stack organization within Golgi apparatus. Jackson CL, editor. PLoS One 8(3):e59821

    Article  CAS  Google Scholar 

  5. Pelletier L, Jokitalo E, Warren G (2000) The effect of Golgi depletion on exocytic transport. Nat Cell Biol 2(11):840–846. https://doi.org/10.1038/35041089

    Article  CAS  Google Scholar 

  6. Hayashi S, Okada Y (2015) Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics. Mol Biol Cell 26(9):1743–1751. https://doi.org/10.1091/mbc.E14-08-1287

    Article  CAS  Google Scholar 

  7. R-CNN for object detection and instance segmentation on Keras and TensorFlow. 2017. https://github.com/matterport/Mask_RCNN

  8. Stringer C, Wang T, Michaelos M, Pachitariu M (2021) Cellpose: a generalist algorithm for cellular segmentation. Nat Methods 18(1):100–106. https://doi.org/10.1038/s41592-020-01018-x

    Article  CAS  Google Scholar 

  9. Tokuoka Y, Yamada TG, Mashiko D, Ikeda Z, Hiroi NF, Kobayashi TJ, Yamagata K, Funahashi A (2020) 3D convolutional neural networks-based segmentation to acquire quantitative criteria of the nucleus during mouse embryogenesis. NPJ Syst Biol Appl 6(1):32. https://doi.org/10.1038/s41540-020-00152-8

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Charles Yokoyama (IRCN, The University of Tokyo) for proofreading the manuscript.

Funding This work was supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT)/Japan Society for the Promotion of Science (JSPS) 18K06233 (to D.T.), 18K06133 (A.S.), 19H05974 (Y.O.), 19H05975 (Y.O.), 21K06163 (D.T.), 21H04708 and 21H05028 (A.S.), Japan Science and Technology Agency (JST) JPMJCR20E2 (Y.O.) and JPMJMS2025-14 (Y.O.), Sumitomo Foundation (D.T.), and Kato Memorial Bioscience Foundation (D.T.)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daisuke Takao or Ayano Satoh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Takao, D., Kyunai, Y.M., Okada, Y., Satoh, A. (2023). A Primer on Deep Learning-Based Cellular Image Classification of Changes in the Spatial Distribution of the Golgi Apparatus After Experimental Manipulation. In: Wang, Y., Lupashin, V.V., Graham, T.R. (eds) Golgi. Methods in Molecular Biology, vol 2557. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2639-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2639-9_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2638-2

  • Online ISBN: 978-1-0716-2639-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics