Skip to main content

Computational Methods for the Design of Recombinase Logic Circuits with Adaptable Circuit Specifications

  • Protocol
  • First Online:
Computational Biology and Machine Learning for Metabolic Engineering and Synthetic Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2553))

  • 1887 Accesses

Abstract

Synthetic biology aims at engineering new biological systems and functions that can be used to provide new technological solutions to worldwide challenges. Detection and processing of multiple signals are crucial for many synthetic biology applications. A variety of logic circuits operating in living cells have been implemented. One particular class of logic circuits uses site-specific recombinases mediating specific DNA inversion or excision. Recombinase logic offers many interesting features, including single-layer architectures, memory, low metabolic footprint, and portability in many species. Here, we present two automated design strategies for both Boolean and history-dependent recombinase-based logic circuits. One approach is based on the distribution of computation within multicellular consortia, and the other is a single-cell design. Both are complementary and adapted for non-expert users via a web design interface, called CALIN and RECOMBINATOR, for multicellular and single-cell design strategies, respectively. In this book chapter, we are guiding the reader step by step through recombinase logic circuit design, from selecting the design strategy fitting to their final system of interest to obtaining the final design using one of our design web interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Galanie S, Thodey K, Trenchard IJ et al (2015) Complete biosynthesis of opioids in yeast. Science 349:1095–1100. https://doi.org/10.1126/science.aac9373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Paddon CJ, Westfall PJ, Pitera DJ et al (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532. https://doi.org/10.1038/nature12051

    Article  CAS  PubMed  Google Scholar 

  3. Isabella VM, Ha BN, Castillo MJ et al (2018) Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat Biotechnol 36(9):857–864. https://doi.org/10.1038/nbt.4222

    Article  CAS  PubMed  Google Scholar 

  4. Praveschotinunt P, Duraj-Thatte AM, Gelfat I et al (2019) Engineered E. coli Nissle 1917 for the delivery of matrix-tethered therapeutic domains to the gut. Nat Commun 10:5580. https://doi.org/10.1038/s41467-019-13336-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cui M, Sun T, Li S et al (2021) NIR light-responsive bacteria with live bio-glue coatings for precise colonization in the gut. Cell Rep 36:109690. https://doi.org/10.1016/j.celrep.2021.109690

    Article  CAS  PubMed  Google Scholar 

  6. Kalos M, June CH (2013) Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology. Immunity 39:49–60. https://doi.org/10.1016/j.immuni.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  7. Bryksin AV, Brown AC, Baksh MM et al (2014) Learning from nature – novel synthetic biology approaches for biomaterial design. Acta Biomater 10:1761–1769. https://doi.org/10.1016/j.actbio.2014.01.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kalyoncu E, Ahan RE, Ozcelik CE, Seker UOS (2019) Genetic logic gates enable patterning of amyloid nanofibers. Adv Mater 31(39):e1902888. https://doi.org/10.1002/adma.201902888

    Article  CAS  PubMed  Google Scholar 

  9. Tang T-C, Tham E, Liu X et al (2021) Hydrogel-based biocontainment of bacteria for continuous sensing and computation. Nat Chem Biol 17:724–731. https://doi.org/10.1038/s41589-021-00779-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chang H-J, Voyvodic PL, Zuniga A, Bonnet J (2017) Microbially derived biosensors for diagnosis, monitoring and epidemiology. Microb Biotechnol 10(5):1031–1035. https://doi.org/10.1111/1751-7915.12791

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kim SG, Noh MH, Lim HG et al (2018) Molecular parts and genetic circuits for metabolic engineering of microorganisms. FEMS Microbiol Lett 365:fny187. https://doi.org/10.1093/femsle/fny187

    Article  CAS  Google Scholar 

  12. Pham HL, Wong A, Chua N et al (2017) Engineering a riboswitch-based genetic platform for the self-directed evolution of acid-tolerant phenotypes. Nat Commun 8:411. https://doi.org/10.1038/s41467-017-00511-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sarpeshkar R (2014) Analog synthetic biology. Philos Trans A Math Phys Eng Sci 372:20130110. https://doi.org/10.1098/rsta.2013.0110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nielsen AK, Der BS, Shin J et al (2016) Genetic circuit design automation. Science 352(6281):aac7341. https://doi.org/10.1126/science.aac7341

    Article  CAS  PubMed  Google Scholar 

  15. Macia J, Manzoni R, Conde N et al (2016) Implementation of complex biological logic circuits using spatially distributed multicellular consortia. PLoS Comput Biol 12:e1004685

    Article  Google Scholar 

  16. Gander MW, Vrana JD, Voje WE et al (2017) Digital logic circuits in yeast with CRISPR-dCas9 NOR gates. Nat Commun 8:15459. https://doi.org/10.1038/ncomms15459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Anderson DA, Voigt CA (2021) Competitive dCas9 binding as a mechanism for transcriptional control. Mol Syst Biol 17:e10512. https://doi.org/10.15252/msb.202110512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Win MN, Smolke CD (2007) A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proc Natl Acad Sci U S A 104:14283–14288. https://doi.org/10.1073/pnas.0703961104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Green AA, Kim J, Ma D et al (2017) Complex cellular logic computation using ribocomputing devices. Nature 548(7665):117–121. https://doi.org/10.1038/nature23271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bonnet J, Yin P, Ortiz ME et al (2013) Amplifying genetic logic gates. Science 340:599–603. https://doi.org/10.1126/science.1232758

    Article  CAS  PubMed  Google Scholar 

  21. Guiziou S, Mayonove P, Bonnet J (2019) Hierarchical composition of reliable recombinase logic devices. Nat Commun 10:456. https://doi.org/10.1038/s41467-019-08391-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Weinberg BH, Pham NTH, Caraballo LD et al (2017) Large-scale design of robust genetic circuits with multiple inputs and outputs for mammalian cells. Nat Biotechnol 35:453–462

    Article  CAS  Google Scholar 

  23. Zúñiga A, Guiziou S, Mayonove P et al (2020) Rational programming of history-dependent logic in cellular populations. Nat Commun 11:4758. https://doi.org/10.1038/s41467-020-18455-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Merrick CA, Zhao J, Rosser SJ (2018) Serine integrases: advancing synthetic biology. ACS Synth Biol 7:299–310. https://doi.org/10.1021/acssynbio.7b00308

    Article  CAS  PubMed  Google Scholar 

  25. Yang L, Nielsen AAK, Fernandez-Rodriguez J et al (2014) Permanent genetic memory with >1-byte capacity. Nat Methods 11:1261–1266

    Article  CAS  Google Scholar 

  26. Fogg PCM, Colloms S, Rosser S et al (2014) New applications for phage integrases. J Mol Biol 426:2703–2716. https://doi.org/10.1016/j.jmb.2014.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guiziou S, Ulliana F, Moreau V et al (2018) An automated design framework for multicellular recombinase logic. ACS Synth Biol 7:1406–1412. https://doi.org/10.1021/acssynbio.8b00016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Courbet A, Endy D, Renard E et al (2015) Detection of pathological biomarkers in human clinical samples via amplifying genetic switches and logic gates. Sci Transl Med 7(289):289ra83

    Article  Google Scholar 

  29. Byrne KM, Monsefi N, Dawson JC et al (2016) Bistability in the Rac1, PAK, and RhoA signaling network drives actin cytoskeleton dynamics and cell motility switches. Cell Syst 2:38–48. https://doi.org/10.1016/j.cels.2016.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Harmon B, Chylek LA, Liu Y et al (2017) Timescale separation of positive and negative signaling creates history-dependent responses to IgE receptor stimulation. Sci Rep 7:15586. https://doi.org/10.1038/s41598-017-15568-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wolf DM, Fontaine-Bodin L, Bischofs I et al (2008) Memory in microbes: quantifying history-dependent behavior in a bacterium. PLoS One 3:e1700. https://doi.org/10.1371/journal.pone.0001700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guiziou S, Chu JC, Nemhauser JL (2021) Decoding and recoding plant development. Plant Physiol 187:515–526. https://doi.org/10.1093/plphys/kiab336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guiziou S, Pérution-Kihli G, Ulliana F, Leclère M (2019) Exploring the design space of recombinase logic circuits. bioRxiv 2019:711374

    Google Scholar 

  34. Enderton H, Enderton HB (2001) A mathematical introduction to logic. Academic Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zúñiga, A., Bonnet, J., Guiziou, S. (2023). Computational Methods for the Design of Recombinase Logic Circuits with Adaptable Circuit Specifications. In: Selvarajoo, K. (eds) Computational Biology and Machine Learning for Metabolic Engineering and Synthetic Biology. Methods in Molecular Biology, vol 2553. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2617-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2617-7_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2616-0

  • Online ISBN: 978-1-0716-2617-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics