Skip to main content

Challenges to Ensure a Better Translation of Metabolic Engineering for Industrial Applications

  • Protocol
  • First Online:
Computational Biology and Machine Learning for Metabolic Engineering and Synthetic Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2553))

Abstract

Metabolic engineering has evolved towards creating cell factories with increasingly complex pathways as economic criteria push biotechnology to higher value products to provide a sustainable source of speciality chemicals. Optimization of such pathways often requires high combinatory exploration of best pathway balance, and this has led to increasing use of high-throughput automated strain construction platforms or novel optimization techniques. In addition, the low catalytic efficiency of such pathways has shifted emphasis from gene expression strategies towards novel protein engineering to increase specific activity of the enzymes involved so as to limit the metabolic burden associated with excessively high pressure on ribosomal machinery when using massive overexpression systems. Metabolic burden is now generally recognized as a major hurdle to be overcome with consequences on genetic stability but also on the intensified performance needed industrially to attain the economic targets for successful product launch. Increasing awareness of the need to integrate novel genetic information into specific sites within the genome which not only enhance genetic stability (safe harbors) but also enable maximum expression profiles has led to genome-wide assessment of best integration sites, and bioinformatics will facilitate the identification of most probable landing pads within the genome.

To facilitate the transfer of novel biotechnological potential to industrial-scale production, more attention, however, has to be paid to engineering metabolic fitness adapted to the specific stress conditions inherent to large-scale fermentation and the inevitable heterogeneity that will occur due to mass transfer limitations and the resulting deviation away from ideal conditions as seen in laboratory-scale validation of the engineered cells. To ensure smooth and rapid transfer of novel cell lines to industry with an accelerated passage through scale-up, better coordination is required form the onset between the biochemical engineers involved in process technology and the genetic engineers building the new strain so as to have an overall strategy able to maximize innovation at all levels. This should be one of our key objectives when building fermentation-friendly chassis organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Voigt CA (2020) Synthetic biology 2020-2030: six commercially available products that are changing the world. Nat Commun 11:6739–6745

    Article  Google Scholar 

  2. Bailey JE (1991) Towards a science of metabolic engineering. Science 252(5013):1668–1675

    Article  CAS  PubMed  Google Scholar 

  3. Stephanopoulos G, Vallino JJ (1991) Network rigidity and metabolic engineering in metabolite overproduction. Science 252(5013):1675–1681

    Article  CAS  PubMed  Google Scholar 

  4. Stephanopoulos G (2002) Metabolic engineering by genome shuffling. Nat Biotechnol 20:665–668

    Article  Google Scholar 

  5. Chao R, Misra S, Si T et al (2017) Engineering biological systems using automated biofounderies. Metab Eng 42:98–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nielsen J (2017) Systems biology of metabolism. Annu Rev Biochem 86:245–275

    Article  CAS  PubMed  Google Scholar 

  7. Choi S, Song CW, Shin JH et al (2015) Biorefineries for the production of top building block chemicals and their derivatives. Metab Eng 28:223–239

    Article  CAS  PubMed  Google Scholar 

  8. Tsage Y, Kimisaguchi H, Susaki K et al (2016) Engineering cell factories for producing building block chemicals for biopolymer synthesis. Microb Cell Factories 15:19

    Article  Google Scholar 

  9. Wendish VF (2014) Microbial production of amino acids and derived chemicals: synthetic biology approaches to strain development. Curr Opin Biotechnol 30:51–58

    Article  Google Scholar 

  10. Products made from petroleum. Https://www.ranken-energy.com/index.php/products-made-from petroleum/

  11. Dietrich JA, McKee AE, Keasling JD (2010) High throughput metabolic engineering: advances in small molecule screening and selection. Annu Rev Biochem 79:563–565

    Article  CAS  PubMed  Google Scholar 

  12. Volk MJ, Lourentzou I, Misra S et al (2020) Biosystems design by machine-learning. ACS Synth Biol 9(7):1514–1533

    Article  CAS  PubMed  Google Scholar 

  13. Carbonell P, Radivojevic T, Martin HG (2019) Opportunities at the intersection of synthetic biology, machine learning and automation. ACS Synth Biol 8(7):1474–1477

    Article  CAS  PubMed  Google Scholar 

  14. Wu G, Yan Q, Jones JA et al (2016) Metabolic burden: cornerstones in synthetic biology and metabolic engineering platforms. Trends Biotechnol 34(8):652–644

    Article  CAS  PubMed  Google Scholar 

  15. Raveendran S, Parameswaran B, Ummalyma SB et al (2018) Applications of microbial enzymes in food industry. Food Technol Biotechnol 56(1):16–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rudge SR, Ladisch MR (2020) Industrial challenges of recombinant proteins. Adv Biochem Eng Biotechnol 171:1–22

    CAS  PubMed  Google Scholar 

  17. Chen X, Zhang C, Lindley ND (2019) Metabolic engineering strategies for sustainable terpenoid flavour and fragrance synthesis. J Agric Food Chem 68(38):10252–10264

    Article  Google Scholar 

  18. Lee S, Kim HU (2015) Systems strategies for developing industrial microbial strains. Nat Biotechnol 33:1061–1072

    Article  CAS  PubMed  Google Scholar 

  19. Sharing the way to innovation. https://www.ibisba.eu

  20. Zhang C, Chen X, Orban A et al (2020) Agrocybe aegerita serves as a gateway for identifying sesquiterpene biosynthetic enzymes in higher fungi. ACS Chem Biol 15:1268–1277

    Article  CAS  PubMed  Google Scholar 

  21. Shukal S, Chen X, Zhang C (2019) Systematic engineering for high-yield production of viridiflorol and amorphadiene in auxotrophic Escherichia coli. Metab Eng 55:170–178

    Article  CAS  PubMed  Google Scholar 

  22. Nouaille S, Mondeil S, Finoux AL et al (2017) The stability of an mRNA is influenced by its concentration: a potential physical mechanism to regulate gene expression. Nucleic Acids Res 45(20):11711–11724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Smanski MJ, Bhatia S, Zhao D et al (2014) Functional optimisation of gene clusters by combinatorial design. Nat Biotechnol 32(12):1241–1249

    Article  CAS  PubMed  Google Scholar 

  24. Zhang C, Chen X, Lindley ND et al (2018) A plug-n-play modular metabolic system for the production of apocarotenoids. Biotechnol Bioeng 115:174–183

    Article  CAS  PubMed  Google Scholar 

  25. Zhang C, Seow VY, Chen X et al (2018) Multidimensional heuristic process for high-yield production of astaxanthin and fragrance molecules in Escherichia coli. Nat Commun 9:1858–1870

    Article  PubMed  PubMed Central  Google Scholar 

  26. Walther T, Calvayrac F, Malbert Y et al (2018) Construction of a synthetic pathway for the production of 2,4-dihydroxybutyric acid from homoserine. Metab Eng 45:237–245

    Article  CAS  PubMed  Google Scholar 

  27. Rugbjerg P, Sommer MOA (2019) Overcoming genetic heterogeneity in industrial fermentations. Nat Biotechnol 37:869–876

    Article  CAS  PubMed  Google Scholar 

  28. Burgard A, Burk MJ, Osterhout R et al (2016) Development of a commercial scale process for production of 1, 4-butanediol from sugar. Curr Opin Biotechnol 42:118–125

    Article  CAS  PubMed  Google Scholar 

  29. Richardson SM, Mitchell LA, Stracquadanio G et al (2017) Design of a synthetic yeast genome. Science 355(6329):1040–1044

    Article  CAS  PubMed  Google Scholar 

  30. Sadelain M, Papapetrou E, Bushman F (2012) Safe harbours for the integration of new DNA in the human genome. Nat Rev Cancer 12:51–58

    Article  CAS  Google Scholar 

  31. Papapetrou EP, Lee G, Malani N et al (2011) Genomic safe harbors permit high β-globin transgene expression in thalassemia induced pluripotent stem cells. Nat Biotechnol 29:73–78

    Article  CAS  PubMed  Google Scholar 

  32. Papapetrou EP, Schambach A (2016) Gene insertion into genomic safe harbors for human gene therapy. Mol Ther 24:678–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Friedrich G, Soriano P (1991) Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev 5(9):1513–1523

    Article  CAS  PubMed  Google Scholar 

  34. Gaidukov L, Wroblewska L, Teague Nelson BT et al (2018) Multi-landing pad DNA integration platform for mammalian cell engineering. Nucleic Acids Res 46:4072–4086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pavani G, Amendola M (2021) Targeted gene delivery: where to land. Front Genome Ed 2:36

    Article  Google Scholar 

  36. Bai Flagfeldt D, Siewers V, Huang L et al (2009) Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae. Yeast 26(10):545–551

    Article  CAS  Google Scholar 

  37. Mikkelsen MD, Buron LD, Salomonsen B et al (2012) Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform. Metab Eng 14(2):104–111

    Article  CAS  PubMed  Google Scholar 

  38. Jessop-Fabre MM, Jakociunas T, Stovicek V et al (2016) EasyClone-MarkerFree: a vector toolkit for marker-less integration of genes into Saccharomyces cerevisiae via CRISPR-Cas9. Biotechnol J 11(8):1110–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jensen NB, Strucko T, Kildegaard KR et al (2014) EasyClone: method for iterative chromosomal integration of multiple genes Saccharomyces cerevisiae. FEMS Yeast Res 14(2):238–248

    Article  CAS  PubMed  Google Scholar 

  40. Stovicek V, Borodina I, Forster J (2015) CRISPR–Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains. Metab Eng Commun 2:13–22

    Article  PubMed  PubMed Central  Google Scholar 

  41. Babaei M, Sartori L, Karpukhin A et al (2021) Expansion of EasyClone-MarkerFree toolkit for Saccharomyces cerevisiae genome with new integration sites. FEMS Yeast Res 21(4):foab027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lian J, Bao Z, Hu S et al (2018) Engineered CRISPR/Cas9 system for multiplex genome engineering of polyploid industrial yeast strains. Biotechnol Bioeng 115(6):1630–1635

    Article  CAS  PubMed  Google Scholar 

  43. Weninger A, Fischer JE, Raschmanova H et al (2018) Expanding the CRISPR/Cas9 toolkit for Pichia pastoris with efficient donor integration and alternative resistance markers. J Cell Biochem 119(4):3183–3198

    Article  CAS  PubMed  Google Scholar 

  44. Gao J, Gao N, Zhai X et al (2021) Recombination machinery engineering for precise genome editing in methylotrophic yeast Ogataea polymorpha. iScience 24(3):102168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rajkumar AS, Varela JA, Juergens H et al (2019) Biological parts for Kluyveromyces marxianus synthetic biology. Front Bioeng Biotechnol 7:97

    Article  PubMed  PubMed Central  Google Scholar 

  46. Defrel G, Marsaud N, Rifa E et al (2021) Identification of loci enabling high-level heterologous gene expression in the diatom Phaeodactylum tricornutum. Front Bioeng Biotechnol 864

    Google Scholar 

  47. Larroude M, Park YK, Soudier P et al (2019) A modular Golden Gate toolkit for Yarrowia lipolytica synthetic biology. Microb Biotechnol 12(6):1249–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shi S, Liang Y, Zhang MM et al (2016) A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae. Metab Eng 33:19–27

    Article  CAS  PubMed  Google Scholar 

  49. Huang S, Geng A (2020) High-copy genome integration of 2, 3-butanediol biosynthesis pathway in Saccharomyces cerevisiae via in vivo DNA assembly and replicative CRISPR-Cas9 mediated delta integration. J Biotechnol 310:13–20

    Article  CAS  PubMed  Google Scholar 

  50. Guo ZP, Borsenberger V, Croux C et al (2020) An artificial chromosome ylAC enables efficient assembly of multiple genes in Yarrowia lipolytica for biomanufacturing. Commun Biol 3(1):1–10

    Article  Google Scholar 

  51. Postma ED, Dashko S, van Breemen L et al (2021) A supernumerary designer chromosome for modular in vivo pathway assembly in Saccharomyces cerevisiae. Nucleic Acids Res 49(3):1769–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Aznauryan E, Yermanos A, Kinzina E et al (2022) Discovery and validation of human genomic safe harbor sites for gene and cell therapies. Cell Rep Methods 2:100154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Haringa C, Jang W, Wang G et al (2018) Computational Fluid Dynamics simulation of an industrial P. chrysogenum fermentation with coupled 9-pool metabolic model: towards rational scale-down and design optimisation. Chem Eng Sci 175:12–24

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nic D. Lindley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Daboussi, F., Lindley, N.D. (2023). Challenges to Ensure a Better Translation of Metabolic Engineering for Industrial Applications. In: Selvarajoo, K. (eds) Computational Biology and Machine Learning for Metabolic Engineering and Synthetic Biology. Methods in Molecular Biology, vol 2553. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2617-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2617-7_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2616-0

  • Online ISBN: 978-1-0716-2617-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics