Skip to main content

A Spectrophotometric Turbidity Assay to Study Liquid-Liquid Phase Separation of UBQLN2 In Vitro

  • Protocol
  • First Online:
Protein Aggregation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2551))

Abstract

Liquid–liquid phase separation (LLPS) is hypothesized to be the underlying mechanism for how membraneless organelles or biomolecular condensates form inside both prokaryotic and eukaryotic cells. Protein LLPS is a biophysical process during which proteins demix from homogeneous solution to form protein-dense droplets with liquid-like properties. Disruptions to LLPS, such as changes to material properties of condensates or physicochemical parameters for LLPS onset, are implicated in neurodegenerative diseases and cancer. Therefore, it is essential to determine the physicochemical parameters that promote protein LLPS. Here, we present our UV-Vis spectrophotometric turbidity assay to characterize the temperature and concentration dependence of LLPS for UBQLN2, a protein that undergoes LLPS via homotypic interactions in vitro and forms stress-induced condensates in cells. Mutations in UBQLN2 cause amyotrophic lateral sclerosis (ALS) and disrupt UBQLN2 LLPS. We present a detailed expression and purification protocol for a C-terminal construct of UBQLN2 and how we use microscopy to image UBQLN2 LLPS. We use our UV-Vis assay to construct temperature–concentration phase diagrams for wild-type and mutant UBQLN2 constructs to determine the effects of domain deletions and/or mutations on UBQLN2 phase separation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brangwynne CP, Eckmann CR, Courson DS et al (2009) Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324:1729–1732

    Article  CAS  PubMed  Google Scholar 

  2. Brangwynne CP, Mitchison TJ, Hyman AA (2011) Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc Natl Acad Sci U S A 108:4334–4339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wippich F, Bodenmiller B, Trajkovska MG et al (2013) Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling. Cell 152:791–805

    Article  CAS  PubMed  Google Scholar 

  4. Mitrea DM, Cika JA, Guy CS et al (2016) Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA. elife 5:e13571

    Article  PubMed  PubMed Central  Google Scholar 

  5. Conicella AE, Zerze GH, Mittal J et al (2016) ALS mutations disrupt phase separation mediated by α-helical structure in the TDP-43 low-complexity C-terminal domain. Structure 24:1537–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alberti S, Dormann D (2019) Liquid–liquid phase separation in disease. Annu Rev Genet 53:171–194

    Article  CAS  PubMed  Google Scholar 

  7. Kato M, Han TW, Xie S et al (2012) Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149:753–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bouchard JJ, Otero JH, Scott DC et al (2018) Cancer mutations of the tumor suppressor SPOP disrupt the formation of active, phase-separated compartments. Mol Cell 72:19–36.e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ambadipudi S, Biernat J, Riedel D et al (2017) Liquid–liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein tau. Nat Commun 8:275

    Article  PubMed  PubMed Central  Google Scholar 

  10. Murakami T, Qamar S, Lin JQ et al (2015) ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function. Neuron 88:678–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Banani SF, Rice AM, Peeples WB et al (2016) Compositional control of phase-separated cellular bodies. Cell 166:651–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li P, Banjade S, Cheng H-C et al (2012) Phase transitions in the assembly of multivalent signalling proteins. Nature 483:336–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jonas S, Izaurralde E (2013) The role of disordered protein regions in the assembly of decapping complexes and RNP granules. Genes Dev 27:2628–2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Martin EW, Holehouse AS, Peran I et al (2020) Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367:694–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dignon GL, Best RB, Mittal J (2020) Biomolecular phase separation: from molecular driving forces to macroscopic properties. Annu Rev Phys Chem 71:53–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Posey AE, Holehouse AS, Pappu RV (2018) Phase separation of intrinsically disordered proteins. In: Methods in enzymology. Academic Press, 611:1–30

    Google Scholar 

  17. Bracha D, Walls MT, Wei M-T et al (2018) Mapping local and global liquid phase behavior in living cells using photo-oligomerizable seeds. Cell 175:1467–1480.e13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Riback JA, Zhu L, Ferrolino MC et al (2020) Composition-dependent thermodynamics of intracellular phase separation. Nature 581:209–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Peran I, Martin EW, Mittag T (2020) Walking along a protein phase diagram to determine coexistence points by static light scattering. In: Kragelund BB, Skriver K (eds) Intrinsically disordered proteins: methods and protocols. Springer US, New York, pp 715–730

    Chapter  Google Scholar 

  20. Milkovic NM, Mittag T (2020) Determination of protein phase diagrams by centrifugation. In: Kragelund BB, Skriver K (eds) Intrinsically disordered proteins: methods and protocols. Springer, US, New York, NY, pp 685–702

    Chapter  Google Scholar 

  21. Holland J, Crabtree MD, Nott TJ (2020) In vitro transition temperature measurement of phase-separating proteins by microscopy. In: Kragelund BB, Skriver K (eds) Intrinsically disordered proteins: methods and protocols. Springer US, New York, pp 703–714

    Chapter  Google Scholar 

  22. Riback JA, Katanski CD, Kear-Scott JL et al (2017) Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell 168:1028–1040.e19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dao TP, Kolaitis R-M, Kim HJ et al (2018) Ubiquitin modulates liquid-liquid phase separation of UBQLN2 via disruption of multivalent interactions. Mol Cell 69:965–978.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Martin EW, Mittag T (2018) Relationship of sequence and phase separation in protein low-complexity regions. Biochemistry 57:2478–2487

    Article  CAS  PubMed  Google Scholar 

  25. Molliex A, Temirov J, Lee J et al (2015) Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163:123–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ruff KM, Roberts S, Chilkoti A et al (2018) Advances in understanding stimulus-responsive phase behavior of intrinsically disordered protein polymers. J Mol Biol 430:4619–4635

    Article  CAS  PubMed  Google Scholar 

  27. Yang Y, Jones HB, Dao TP et al (2019) Single amino acid substitutions in stickers, but not spacers, substantially alter UBQLN2 phase transitions and dense phase material properties. J Phys Chem B 123:3618–3629

    Article  CAS  PubMed  Google Scholar 

  28. Renaud L, Picher-Martel V, Codron P et al (2019) Key role of UBQLN2 in pathogenesis of amyotrophic lateral sclerosis and frontotemporal dementia. Acta Neuropathol Commun 7:103

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zheng T, Yang Y, Castañeda CA (2020) Structure, dynamics and functions of UBQLNs: at the crossroads of protein quality control machinery. Biochem J 477:3471–3497

    Article  CAS  PubMed  Google Scholar 

  30. Kleijnen MF, Shih AH, Zhou P et al (2000) The hPLIC proteins may provide a link between the ubiquitination machinery and the proteasome. Mol Cell 6:409–419

    Article  CAS  PubMed  Google Scholar 

  31. Deng H-X, Chen W, Hong S-T et al (2011) Mutations in UBQLN2 cause dominant X-linked juvenile and adult onset ALS and ALS/dementia. Nature 477:211–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Synofzik M, Maetzler W, Grehl T et al (2012) Screening in ALS and FTD patients reveals 3 novel UBQLN2 mutations outside the PXX domain and a pure FTD phenotype. Neurobiol Aging 33:2949.e13–2949.e17

    Article  CAS  Google Scholar 

  33. Dao TP, Martyniak B, Canning AJ et al (2019) ALS-linked mutations affect UBQLN2 oligomerization and phase separation in a position- and amino acid-dependent manner. Structure 27:937–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This material is based on work supported by NSF MCB grant 1750462 to C.A.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Castañeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Raymond-Smiedy, P., Bucknor, B., Yang, Y., Zheng, T., Castañeda, C.A. (2023). A Spectrophotometric Turbidity Assay to Study Liquid-Liquid Phase Separation of UBQLN2 In Vitro. In: Cieplak, A.S. (eds) Protein Aggregation. Methods in Molecular Biology, vol 2551. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2597-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2597-2_32

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2596-5

  • Online ISBN: 978-1-0716-2597-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics