Skip to main content

Mapping Phase Diagram of Tau-RNA LLPS Under Live Cell Coculturing Conditions

  • Protocol
  • First Online:
Protein Aggregation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2551))

Abstract

Protein liquid-liquid phase separation (LLPS) has been associated with biological functions and pathological aggregation. Mapping the phase separation conditions is the first step to identify and quantify the driving forces of LLPS. Here, we describe the protocols to draw the phase diagram of tau-RNA LLPS and use the mapped diagram to guide experimental conditions for LLPS-cell coculturing, electron resonance spectroscopy in particular double electron-electron resonance spectroscopy, crosslinking immunoprecipitation, and isothermal titration calorimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brangwynne CP, Eckmann CR, Courson DS et al (2009) Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324:1729–1732

    Article  CAS  PubMed  Google Scholar 

  2. Molliex A, Temirov J, Lee J et al (2015) Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163:123–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hyman AA, Weber CA, Jülicher F (2014) Liquid-liquid phase separation in biology. Annu Rev Cell Dev Biol 30:39–58

    Article  CAS  PubMed  Google Scholar 

  4. Kato M, Han TW, Xie S et al (2012) Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149:753–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li H-R, Chiang W-C, Chou P-C et al (2018) TAR DNA-binding protein 43 (TDP-43) liquid-liquid phase separation is mediated by just a few aromatic residues. J Biol Chem 293(16):6090–6098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kwon I, Xiang S, Kato M et al (2014) Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells. Science 345:1139–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ambadipudi S, Biernat J, Riedel D et al (2017) Liquid–liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau. Nat Commun 8:275

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang X, Eschmann NE, Lin Y et al (2017) RNA stores Tau reversibly in complex coacervates. PLoS Biol 15(7):e2002183

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hernández-Vega A, Braun M, Scharrel L et al (2017) Local nucleation of microtubule bundles through Tubulin concentration into a condensed Tau phase. Cell Rep 20:2304–2312

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ferreon JC, Jain A, Choi K-J et al (2018) Acetylation disfavors Tau phase separation. Int J Mol Sci 19(5):1360

    Article  PubMed Central  Google Scholar 

  11. Wegmann S, Eftekharzadeh B, Tepper K et al (2018) Tau protein liquid-liquid phase separation can initiate tau aggregation. EMBO J 37:e98049

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lin Y, McCarty J, Rauch JN et al (2019) Narrow equilibrium window for complex coacervation of tau and RNA under cellular conditions. Elife 8:e42571

    Article  PubMed  PubMed Central  Google Scholar 

  13. Getz EB, Xiao M, Chakrabarty T et al (1999) A Comparison between the sulfhydryl reductants tris(2-carboxyethyl)phosphine and dithiothreitol for use in protein biochemistry. Anal Biochem 273:73–80

    Article  CAS  PubMed  Google Scholar 

  14. Eschmann NA, Georgieva ER, Ganguly P et al (2017) Signature of an aggregation-prone conformation of Tau. Sci Rep 7:44739

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fichou Y, Lin Y, Rauch JN et al (2018) Cofactors are essential constituents of stable and seeding-active tau fibrils. Proc Natl Acad Sci USA 115:13234–13239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lin Y, Fichou Y, Zeng Z et al (2020) Electrostatically driven complex coacervation and amyloid aggregation of Tau are independent processes with overlapping conditions. ACS Chem Neurosci 11(4):615–627

    Article  CAS  PubMed  Google Scholar 

  17. Jeschke G (2012) DEER distance measurements on proteins. Annu Rev Phys Chem 63:419–446

    Article  CAS  PubMed  Google Scholar 

  18. Fichou Y, Eschmann NA, Keller TJ et al (2017) Conformation-based assay of Tau protein aggregation. Methods Cell Biol 141:89–112

    Article  CAS  PubMed  Google Scholar 

  19. Jeschke G, Chechik V, Ionita P et al (2006) Deeranalysis2006 – a comprehensive software package for analyzing pulsed ELDOR data. Appl Magn Reson 30:473–498

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge support for this work by the National Institute on Aging (NIA) of the National Institute of Health (NIH) through Grant No. RO1AG05605. KSK and SH also acknowledge partial support by the Tau Consortium of the Rainwater Foundation. We acknowledge the use of the NRI-MCDB Microscopy Facility at UC, Santa Barbara. All the funders above had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songi Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lin, Y., Fichou, Y., Rauch, J.N., Zhang, X., Kosik, K.S., Han, S. (2023). Mapping Phase Diagram of Tau-RNA LLPS Under Live Cell Coculturing Conditions. In: Cieplak, A.S. (eds) Protein Aggregation. Methods in Molecular Biology, vol 2551. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2597-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2597-2_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2596-5

  • Online ISBN: 978-1-0716-2597-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics