Skip to main content

The Pharmacogenetic Impact on the Pharmacokinetics of ADHD Medications

  • Protocol
Pharmacogenomics in Drug Discovery and Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2547))

  • 1488 Accesses

Abstract

ADHD is a common condition in both children and adults. The most prescribed medications for the treatment of ADHD include methylphenidate, mixed amphetamine salts, atomoxetine, guanfacine, and clonidine. While each of these medications have their own distinct pharmacokinetic profile, the extent to which pharmacogenetics effects their pharmacokinetic parameters is best described in atomoxetine, followed by methylphenidate. Atomoxetine is predominantly metabolized by cytochrome p450 2D6 (CYP2D6), while methylphenidate is metabolized by carboxylesterase 1 (CES1). Both CYP2D6 and CES1 have multiple variants resulting in varying levels of enzyme activity; however, to date, the functional consequence of variants and alleles for CYP2D6 is better characterized as compared to CES1. Regarding CYP2D6, individuals who are poor metabolizers prescribed atomoxetine experience up to ten-fold higher exposure as compared to normal metabolizers at comparable dosing. Additionally, individuals prescribed methylphenidate with the rs71647871 variant may experience up to 2.5-fold higher exposure as compared to those without. Having this pharmacogenetic information available may aid clinicians and patients when choosing medications and doses to treat ADHD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Volkow ND, Swanson JM (2013) Clinical practice: adult attention deficit-hyperactivity disorder. N Engl J Med 369:1935–1944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Posner J, Polanczyk GV, Sonuga-Barke E (2020) Attention-deficit hyperactivity disorder. Lancet Lond Engl 395:450–462

    Article  Google Scholar 

  3. Stevens T, Sangkuhl K, Brown JT et al (2019) PharmGKB summary: methylphenidate pathway, pharmacokinetics/pharmacodynamics. Pharmacogenet Genomics 29:136–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Elsayed NA, Yamamoto KM, Froehlich TE (2020) Genetic influence on efficacy of pharmacotherapy for pediatric attention-deficit/hyperactivity disorder: overview and current status of research. CNS Drugs 34:389–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brown JT, Bishop JR, Sangkuhl K et al (2019) Clinical pharmacogenetics implementation consortium guideline for cytochrome P450 (CYP)2D6 genotype and atomoxetine therapy. Clin Pharmacol Ther 106:94–102

    Article  PubMed  Google Scholar 

  6. Markowitz JS, Straughn AB, Patrick KS (2003) Advances in the pharmacotherapy of attention-deficit-hyperactivity disorder: focus on methylphenidate formulations. Pharmacotherapy 23:1281–1299

    Article  CAS  PubMed  Google Scholar 

  7. Merali Z, Ross S, Paré G (2014) The pharmacogenetics of carboxylesterases: CES1 and CES2 genetic variants and their clinical effect. Drug Metabol Drug Interact 29:143–151

    Article  CAS  PubMed  Google Scholar 

  8. Her L, Zhu H-J (2020) Carboxylesterase 1 and precision pharmacotherapy: pharmacogenetics and nongenetic regulators. Drug Metab Dispos Biol Fate Chem 48:230–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang X, Rida N, Shi J et al (2017) A comprehensive functional assessment of carboxylesterase 1 nonsynonymous polymorphisms. Drug Metab Dispos Biol Fate Chem 45:1149–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhu H-J, Patrick KS, Yuan H-J et al (2008) Two CES1 gene mutations lead to dysfunctional carboxylesterase 1 activity in man: clinical significance and molecular basis. Am J Hum Genet 82:1241–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tarkiainen EK, Backman JT, Neuvonen M et al (2012) Carboxylesterase 1 polymorphism impairs oseltamivir bioactivation in humans. Clin Pharmacol Ther 92:68–71

    Article  CAS  PubMed  Google Scholar 

  12. Tarkiainen EK, Tornio A, Holmberg MT et al (2015) Effect of carboxylesterase 1 c.428G >A single nucleotide variation on the pharmacokinetics of quinapril and enalapril. Br J Clin Pharmacol 80:1131–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lewis JP, Horenstein RB, Ryan K et al (2013) The functional G143E variant of carboxylesterase 1 is associated with increased clopidogrel active metabolite levels and greater clopidogrel response. Pharmacogenet Genomics 23:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Paré G, Eriksson N, Lehr T et al (2013) Genetic determinants of dabigatran plasma levels and their relation to bleeding. Circulation 127:1404–1412

    Article  PubMed  Google Scholar 

  15. Stage C, Jürgens G, Guski LS et al (2017) The impact of CES1 genotypes on the pharmacokinetics of methylphenidate in healthy Danish subjects. Br J Clin Pharmacol 83:1506–1514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lyauk YK, Stage C, Bergmann TK et al (2016) Population pharmacokinetics of methylphenidate in healthy adults emphasizing novel and known effects of several carboxylesterase 1 (CES1) variants. Clin Transl Sci 9:337–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stage C, Dalhoff K, Rasmussen HB et al (2019) The impact of human CES1 genetic variation on enzyme activity assessed by ritalinic acid/methylphenidate ratios. Basic Clin Pharmacol Toxicol 125:54–61

    Article  CAS  PubMed  Google Scholar 

  18. ClinicalTrials.gov [Internet]. [cited 15 Sep 2022]. Available from: https://clinicaltrials.gov/

  19. Brown JT, Bishop JR (2015) Atomoxetine pharmacogenetics: associations with pharmacokinetics, treatment response and tolerability. Pharmacogenomics 16:1513–1520

    Article  CAS  PubMed  Google Scholar 

  20. Strattera [Package insert]. Eli Lilly and Company, Indianapolis

    Google Scholar 

  21. Swen JJ, Nijenhuis M, de Boer A et al (2011) Pharmacogenetics: from bench to byte – an update of guidelines. Clin Pharmacol Ther 89:662–673

    Article  CAS  PubMed  Google Scholar 

  22. Zerbe RL, Rowe H, Enas GG et al (1985) Clinical pharmacology of tomoxetine, a potential antidepressant. J Pharmacol Exp Ther 232:139–143

    CAS  PubMed  Google Scholar 

  23. Farid NA, Bergstrom RF, Ziege EA et al (1985) Single-dose and steady-state pharmacokinetics of tomoxetine in normal subjects. J Clin Pharmacol 25:296–301

    Article  CAS  PubMed  Google Scholar 

  24. Sauer J-M, Ponsler GD, Mattiuz EL et al (2003) Disposition and metabolic fate of atomoxetine hydrochloride: the role of CYP2D6 in human disposition and metabolism. Drug Metab Dispos Biol Fate Chem 31:98–107

    Article  CAS  PubMed  Google Scholar 

  25. Witcher JW, Long A, Smith B et al (2003) Atomoxetine pharmacokinetics in children and adolescents with attention deficit hyperactivity disorder. J Child Adolesc Psychopharmacol 13:53–63

    Article  PubMed  Google Scholar 

  26. Brown JT, Abdel-Rahman SM, van Haandel L et al (2016) Single dose, CYP2D6 genotype-stratified pharmacokinetic study of atomoxetine in children with ADHD. Clin Pharmacol Ther 99:642–650

    Article  CAS  PubMed  Google Scholar 

  27. Cui YM, Teng CH, Pan AX et al (2007) Atomoxetine pharmacokinetics in healthy Chinese subjects and effect of the CYP2D6*10 allele. Br J Clin Pharmacol 64:445–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Matsui A, Azuma J, Witcher JW et al (2012) Pharmacokinetics, safety, and tolerability of atomoxetine and effect of CYP2D6*10/*10 genotype in healthy Japanese men. J Clin Pharmacol 52:388–403

    Article  CAS  PubMed  Google Scholar 

  29. Byeon J-Y, Kim Y-H, Na H-S et al (2015) Effects of the CYP2D6*10 allele on the pharmacokinetics of atomoxetine and its metabolites. Arch Pharm Res 38:2083–2091

    Article  CAS  PubMed  Google Scholar 

  30. Bradford LD (2002) CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics 3:229–243

    Article  CAS  PubMed  Google Scholar 

  31. Sistonen J, Sajantila A, Lao O et al (2007) CYP2D6 worldwide genetic variation shows high frequency of altered activity variants and no continental structure. Pharmacogenet Genomics 17:93–101

    Article  CAS  PubMed  Google Scholar 

  32. Adderall XR [Package insert]. Shire LLC, Wayne

    Google Scholar 

  33. Claessens AJ, Risler LJ, Eyal S et al (2010) CYP2D6 mediates 4-hydroxylation of clonidine in vitro: implication for pregnancy-induced changes in clonidine clearance. Drug Metab Dispos Biol Fate Chem 38:1393–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Table of Pharmacogenetic Associations [Internet]. [cited 15 Sep 2021]. Available from: https://www.fda.gov/medical-devices/precision-medicine/table-pharmacogenetic-associations

  35. Li X-Y, Hu X-X, Yang F et al (2019) Effects of 24 CYP2D6 variants found in Chinese population on the metabolism of clonidine in vitro. Chem Biol Interact 313:108840

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob T. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Brown, J.T. (2022). The Pharmacogenetic Impact on the Pharmacokinetics of ADHD Medications. In: Yan, Q. (eds) Pharmacogenomics in Drug Discovery and Development. Methods in Molecular Biology, vol 2547. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2573-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2573-6_15

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2572-9

  • Online ISBN: 978-1-0716-2573-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics