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Abstract

The advent of plant phenomics, coupled with the wealth of genotypic data generated by next-generation
sequencing technologies, provides exciting new resources for investigations into and improvement of
complex traits. However, these new technologies also bring new challenges in quantitative genetics, namely,
a need for the development of robust frameworks that can accommodate these high-dimensional data. In
this chapter, we describe methods for the statistical analysis of high-throughput phenotyping (HTP) data
with the goal of enhancing the prediction accuracy of genomic selection (GS). Following the Introduction
in Sec. 1, Sec. 2 discusses field-based HTP, including the use of unoccupied aerial vehicles and light
detection and ranging, as well as how we can achieve increased genetic gain by utilizing image data derived
from HTP. Section 3 considers extending commonly used GS models to integrate HTP data as covariates
associated with the principal trait response, such as yield. Particular focus is placed on single-trait, multi-
trait, and genotype by environment interaction models. One unique aspect of HTP data is that phenomics
platforms often produce large-scale data with high spatial and temporal resolution for capturing dynamic
growth, development, and stress responses. Section 4 discusses the utility of a random regression model for
performing longitudinal modeling. The chapter concludes with a discussion of some standing issues.

Key words Genetic gain, High-throughput phenotyping, Image data, Longitudinal trait, Quantita-
tive genetics

1 Introduction

The predicted rise in global temperatures, increased variability of
precipitation events, and increased competition for freshwater
resources and arable land threaten to place unique constraints on
global agriculture. Plant breeders in the twenty-first century will
need to develop cultivars that are both high-yielding and resilient to
climate change. The evaluation and development of breeding mate-
rial requires a multifaceted approach, necessitating the consider-
ation of multiple complex, and often interdependent traits.
Successful germplasm development is not only dependent on the
increase in the performance of breeding material that is achieved
each cycle but also the amount of time before a cultivar is released
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to the end-users. Moreover, the development of elite cultivars
tolerant to abiotic stresses requires careful consideration of a suite
of morphological and physiological traits that facilitate adaptation
(e.g., plasticity and stability) to a range of environmental condi-
tions. Thus, genetic improvement in this respect is a highly
demanding process that requires extensive phenotypic evaluation
in multiple environments. Advancements in sequencing have led to
new genomic tools and have opened new avenues of research that
aid breeders in their selection procedure. For instance,
next-generation sequencing techniques such as genotyping-by-
sequencing [1] have significantly increased the number of markers
discovered and the number of individuals that can be sequenced,
providing a cost-efficient tool for breeders to obtain the genotypic
profiles of individuals.

In parallel with next-generation sequencing advancements,
new statistical methods have been developed to enable utilization
of the vast amount of available genomic information for selection
purposes. This is known as genomic selection (GS), and its funda-
mental concept was first introduced by Meuwissen et al. [2]. GS
predicts the performance of unobserved individuals based on the
linkage disequilibrium between markers and causal loci and the
genomic relatedness between observed and unobserved indivi-
duals. It has been shown that GS can increase genetic gain by
reducing the number of cycles and the number of progeny that
need to be phenotypically tested, thus reducing the cost of a
breeding pipeline. Since Meuwissen et al. [2], there have been
improvements in the prediction accuracy of GS through the incor-
poration of pedigree information [3–6], environmental covariates,
and genotype by environment interactions [7–10].

One of the main advantages of GS over phenotypic selection is
that phenotypic information is not required for the validation set.
However, the acquisition of accurate phenotypic information is still
a crucial component for the training or calibration set in the model
building process. In other words, the phenotypic information of
selection candidates is not used directly for selection, but the pre-
dictive ability of the models is negatively affected by the absence of
accurate phenotypes. Obtaining precise phenotypic values is not
trivial, but it is a critical part of genome-enabled breeding [11–13].

In recent years, high-throughput phenotyping (HTP) has
become an emerging technology that can assist breeders in improv-
ing selection procedures and developing commercial cultivars more
rapidly and efficiently [14]. In particular, image-based plant phe-
notyping enables frequent, non-destructive evaluation of multiple
traits for a large number of plants with high precision. Image-based
phenotyping offers several advantages, including being generally
non-destructive, requiring low or no physical human labor input,
being cost effective, and the ability to measure multiple traits at the
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same time in different locations and at different developmental
growth stages [11, 15].

There are a wide range of HTP platforms that have been
developed for the purpose of providing dense phenotypic informa-
tion [16]. Remote sensing and robotic systems developed in green-
houses and growth chambers have a high initial cost but can be fully
automated. Alternatively, HTP data can also be collected in the
field, as described later. In general, these field-based systems are
associated with a high initial cost and also require a well-trained
operator for collecting high-quality data [15]. Reynolds et al. [15]
characterized and compared the available platforms in terms of
associated costs and purposes. Despite such costs, a growing num-
ber of breeding programs are utilizing HTP platforms to better
understand the genetics of quantitative traits and leverage these
high-dimensional data to enhance selection. Specifically, HTP can
be used to both generate dependent phenotypic variables for the
training set in prediction models and provide additional informa-
tion on genetic predictor variables in GS models, thereby improv-
ing prediction accuracies for conventional breeding targets, such as
yield. Thus, this type of data can serve two main purposes: (1) as a
primary trait response (e.g., plant height, canopy coverage, and
number of leaves), and (2) as a covariate associated with the target
trait response (e.g., yield). We discuss these points further in the
following sections.

2 Field-Based High-Throughput Phenotyping Using UAV

In this section, we show that HTP accelerates plant breeding by
improving the response to selection [17]. HTPmethods allow us to
measure plants efficiently and accurately via automatic or semi-
automatic analysis of data collected by cameras and sensors
[18]. Methods for measuring plants cultivated in a field are collec-
tively known as field-based HTP. Field-based HTP enables the
measurement of a large number of plots in an experimental field
using cameras and sensors mounted on different platforms, such as
unoccupied aerial vehicles (UAV) [19], carts [20], tractors [21],
and gantry cranes. Field-based HTP not only improves the effi-
ciency and accuracy of phenotyping of plants in a field but also
makes it possible to evaluate traits that are difficult to measure with
conventional phenotyping methods. In particular, the UAV is one
of the most cost-effective and easy-to-use platforms
[22, 23]. Although the type of camera or sensor that can be
mounted on a UAV is restricted by the payload capacity of the
UAV, light-weight and small cameras and sensors have been devel-
oped, and their precision and cost-efficiency have rapidly improved
in recent years. The UAV is commonly equipped with digital
cameras, multispectral cameras, and thermal infrared imagers in
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field-based HTP [24, 25]. In contrast, hyperspectral cameras
and LiDAR (light detection and ranging) are currently not com-
monly mounted on a UAV but are mainly ground-based HTP
platforms [26–30] because of their weight, size, and cost. The
commercialization of the UAV and related equipment is progres-
sing in various fields, and various measurement devices will be
available for HTP in the near future.

Plant characteristics that can be measured using UAV are
roughly divided into three types of traits: (1) geometric traits,
(2) spectral traits, and (3) physiological traits. For geometric traits,
plant height, canopy cover, and canopy volume are measured
mainly with RGB cameras or multispectral cameras [26, 28–
36]. To measure these traits, a method called Structure from
Motion (SfM) is used to estimate the three-dimensional
(3D) structures of plants or plant canopies from a sequence of
images acquired by a UAV. The structure is obtained using a set
of data points, called a point cloud, in a 3D space. The 3D coordi-
nate information of a point cloud is converted into a digital surface
model (DSM) and an orthomosaic image. DSM is used for measur-
ing plant 3D structural traits, such as plant height and canopy
volume, while orthomosaic images are used for traits evaluated
from above the ground, such as canopy cover. Lodging of plants
can also be measured by DSM analysis [37]. The numbers and
locations of flowers, blooms, and heads are also measured as geo-
metric traits [38, 39]. In these studies, image-based machine
learning has been used for the detection of target objects (i.e.,
flowers, blooms, or heads) from images acquired by UAV. Guo
et al. [38] employed a two-step machine learning method for the
detection of sorghum heads and attained high accuracy on various
genotypes with different head morphologies and at different
growth stages. Xu et al. [39] used a convolutional neural network
to detect cotton blooms and estimated the 3D coordinates of the
blooms using a dense point cloud constructed by SfM. These two
studies demonstrated the potential of the combinatory use of
image-based machine learning and HTP. Moreover, these studies
suggest that simple but labor-intensive measurements, such as the
monitoring of flowering and heading, can be performed on a much
larger scale with HTP and image-based machine learning than with
conventional methods.

For spectral traits, vegetation indices (VI) calculated from mul-
tispectral images acquired by UAV are used for evaluating vegeta-
tion properties, such as plant structure, biochemistry, and plant
physiological and stress status [31, 33, 34, 40–48]. A large number
of VIs have been proposed and have been used in ground-based
platforms, aircraft, and satellite remote sensing. The fine spatial
resolution of a UAV enables the removal of soil and shadow pixels
from images and can improve the estimation of vegetative proper-
ties. Jay et al. [47] used 6-band multispectral cameras to evaluate
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the structural and biochemical plant traits of green fraction, green
area index, leaf chlorophyll content, and canopy chlorophyll and
nitrogen contents, showing that the fine spatial resolution of the
UAV always improved the estimation accuracy of these traits.
Although multispectral images allow us to estimate various VIs
better than RGB images, multispectral cameras are usually more
expensive and have lower resolution than RGB cameras. To resolve
this issue, Khan et al. [49] proposed a method for model-based
estimation of VIs using RGB images. In this method, mean VI
values were computed from the near infrared and red channels of
corresponding plots, and then a deep neural network was trained
with the RGB images as the input source and the VI values as the
target output. A similar approach can be applied to the estimation
of hyperspectral VIs from multispectral or RGB images and will be
useful because hyperspectral cameras are usually much more expen-
sive than multispectral cameras.

As for physiological traits, traits such as leaf chlorophyll con-
tent, protein content, biomass, crop vigor, nutrition status, and
water status are measured by various methods including 3D con-
struction and spectral VIs. A method that is specific to physiological
traits is thermal infrared imaging, which enables the measurement
of canopy temperature and can be used as a tool to indirectly
evaluate the transpiration rate of a plant. Tattaris et al. [24] used a
thermal infrared camera and a multispectral camera coupled with
UAV to measure canopy temperature and the VI of wheat and
found that data acquired by UAV generally exhibited stronger
correlations with yield and biomass than data obtained from
ground-based phenotyping. Ludovisi et al. [50] applied thermal
infrared imaging to measure the canopy temperature of black pop-
lar using UAV and found that the canopy temperature showed a
good correlation with ground-truth stomatal conductance.
Although the canopy temperature is an important indicator of
stress status, it is extremely sensitive to small environmental
changes, making it difficult to assess through slow ground-based
methods [37]. HTP using UAV provides a good solution for this
problem.

2.1 Application of

HTP in Breeding

Populations

When selecting breeding populations using HTP, two relatively
simple methods are considered: (1) indirect selection and
(2) index selection. Another method, selection based on prediction
with HTP and genomic information, will be described later. When
genetic correlations exist, selection for one trait will cause
corresponding changes in other traits that are correlated
[51]. This change in response due to genetic correlation is called
a correlated response and may be caused by pleiotropy or linkage
disequilibrium.
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In the indirect selection method, a target trait, X, is selected
indirectly by selection for trait Y, which has a genetic correlation
with trait X and can be measured by HTP. It is possible to improve
the selection efficiency of the target trait, the measurement of which
would be costly, time consuming, or labor intensive, with traits
readily measured by HTP. For example, Madec et al. [26] measured
wheat plant height with HTP using LiDAR and UAV and found
that it was highly correlated with the plant height measured at the
ground level. They also demonstrated that heading date could be
estimated based on a growth curve of plant height measured by
LiDAR. Kyratzis et al. [44] evaluated the potential use of VIs
acquired by UAV for durum wheat phenotyping and found that
one index was significantly correlated with grain yield.

In the index selection method, a target trait, X, is selected based
on an index calculated from phenotypes of a set of m traits, Ys,
related to the target trait. The simplest index is a linear combination
expressed as

I ¼ Pm
j¼1

bj yj

where bj and yj are the weight and phenotypic value of trait Yj,
respectively. If we consider bj and yj as the effect and state of marker
j in a set of genome-widemarkers, index selection becomes GS. The
weight, which represents the relative importance of each trait, can
be determined by multivariate regression. For example, Kefauver
et al. [25] built a model regressing the grain yield on VIs acquired
by HTP using UAV with stepwise regression and found that the
regression model explained 77.8% of the grain yield variation. Yu
et al. [27] performed hyperspectral imaging of a wheat canopy and
used the resulting data to detect Septoria tritici blotch disease and
to quantify the severity of infection. They used partial least squares
regression to build a prediction model for severity and found that
the accuracy of prediction (correlation between observed and pre-
dicted values) was 0.38–0.60 for three disease metrics. Non-linear
relationships between trait X and a set of traits Ys can also be
modeled in a selection index. Various types of models, including
known and ad hoc machine learning models, can be used for
building an index. Thorp et al. [52] proposed a method for deriv-
ing daily evapotranspiration based on a daily soil water balance
model named FAO-56 [53], which was derived from an index
acquired by HTP using UAV, to evaluate and improve the crop
water use efficiency of cotton varieties. Collectively, indirect or
index selection based on traits measured by HTP has strong poten-
tial to streamline the selection of important agronomic traits, such
as plant height, heading date, grain yield, and disease resistance.
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2.2 Genetic Gain in

HTP-Based Selection

HTP-based selection and GS can accelerate plant breeding by
improving the efficiency of selection. Response to selection is an
index for evaluating the efficiency of selection [54]. The response to
selection R is defined as the difference between the mean pheno-
typic values (yo) of progeny generated from the selected parents and
the mean phenotypic values (yp) of the parental population before
selection.

R ¼ yo � yp:

If we denote the heritability of a trait targeted in the selection as h2

and define the selection differential as the product of the pheno-
typic standard deviation σp and selection intensity i in the parent
population,

R ¼ ih2σp:

This is an important formula in breeding known as the “breeder’s
equation.” If a breeder knows the heritability of the target trait h2

and the standard deviation of the phenotype σp in the parent
population, it is possible to calculate the expected response to
selection R under intensity i. Using the definition of heritability,

h2 ¼ σ2g∕σ
2
p, we can rewrite the formula as

R ¼ ihσg ,

where σg is the square root of the genetic variance in the parent
population.

Now we consider the case in which we select trait X indirectly
by selecting for trait Y, measured with HTP. In this case, the
response to selection of the indirect selection of trait X with trait
Y is

RXY ¼ iY hY rXY σgX ,

where iY is the selection intensity of trait Y, hY is the square root of
the heritability of trait Y, rXY is the genetic correlation between trait
X and trait Y, and σgX is the square root of the genetic variance of
trait X in the parent population. To improve the efficiency of
selection with HTP, this value should be larger than the response
to selection of direct selection of trait X, i.e.,RX¼ iXhXσgX. That is,
the condition for improving the selection efficiency with HTP is

iY hY rXY > iXhX :

When the selection intensities of the two traits are the same
(iY¼ iX), the following two conditions should be satisfied: (1) trait
Y measured by HTP has a higher heritability than trait X, and
(2) the genetic correlation between trait X and trait Y is high.
With HTP, however, it is often possible to evaluate a large number
of genotypes (strains or individuals) as compared with direct selec-
tion of trait X using a conventional phenotyping method.
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Therefore, the selection intensity of trait Y can be increased com-
pared to the selection intensity of trait X. If iY > iX, even when the
heritability of trait Y is not larger than that of trait X, it may be
possible to perform indirect selection on trait X with higher effi-
ciency than that of direct selection.

Index selection with HTP and GS both involve indirect selec-
tion of trait X based on the index I, which is calculated based on
traits measured by HTP or genome-wide marker genotypes. The
response to selection is represented as

RXI ¼ iI rXIσgX ,

where iI is the selection intensity of the index I and rXI is the
accuracy of selection of trait X based on index I. The condition that
the response to index selection is greater than the response to direct
selection of trait X is

iI rXI > iXhX :

When the selection intensities of index I and trait X are the
same (iI¼ iX) and the accuracy rXI of selection of trait X based on
index I exceeds the square root of the heritability of trait X, hX, the
efficiency of selection by index selection exceeds the efficiency of
direct selection of trait X. As in the case of indirect selection using
trait Y, if iI> iX, even when the accuracy rXI of selection of trait X
based on index I does not exceed the square root of the heritability
of trait X, index selection has a higher efficiency than direct
selection.

When we consider the efficiency of a breeding program, it is
important to evaluate the genetic gain per unit time. Dividing the
reaction to selection R by the time δX required for one cycle of
selection, we obtain

ΔGX ¼ ihXσgX
δX

,

where ΔG is the genetic gain per time. The genetic gain of indirect
selection of trait X with trait Y is

ΔGXY ¼ ihY rXY σgX
δY

,

and the genetic gain of index selection of trait X with index I is

ΔGXI ¼ iI rXIσgX
δI

:

Here, δY and δI are the times required for one cycle of indirect and
index selection, respectively. The time required for one cycle of
selection can be shorter for trait Y and index I than for trait
X. For example, the yield and quality of a grain crop are usually
evaluated with multiple plants on a plot-by-plot basis. However, in
indirect and index selection, it may be possible to perform selection
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on a single plant basis in earlier generations, such as second-
generation hybrids (F2). In such a case, δY (or δI) < δX, and even
when the response to selection RXY or RXI is smaller than the
response to selection RX, the genetic gain per unit time becomes
greater under indirect and index selection than under direct
selection.

As described above, the efficiency of selection can be improved
by taking advantage of HTP, especially in terms of improvements in
selection intensity and the time required for one cycle of selection.
Field-based HTP is useful for increasing selection intensity because
of its scalability, while HTP in the greenhouse is good for reducing
the time required for one cycle of selection because it is often
performed on a single-plant basis and year-round. In the applica-
tion of HTP in plant breeding, the factors described earlier should
be taken into account to optimize selection methods for target
traits.

2.3 Use of HTP for

GWAS and GS

Although HTP alone is expected to improve the response to selec-
tion, response to selection can be further improved by using HTP
in combination with genome-wide association studies (GWAS) and
GS. HTP with UAV is particularly suited for this purpose, as it can
measure a large number of small- to medium-sized plots in which
plants are cultivated. HTP with UAV has been applied to the
evaluation of a large number of genotypes (germplasm accessions,
varieties, and breeding lines) in many species, including wheat
[26, 40, 42, 55, 56], maize [31, 33], sorghum [32, 36, 38], and
black poplar [50]. Condorelli et al. [42] performed GWAS with
248 elite durum wheat lines to compare the results obtained with
two UAVs and a ground-based method to measure a VI (Normal-
ized Difference Vegetation Index, NDVI). More associations were
detected by HTP using UAV than with the ground-based method,
suggesting an improved ability of HTP using UAV over the
ground-based method. Spindel et al. [36] undertook GWAS with
648 diverse sorghum lines for 460 combinations of traits, treat-
ments, time points, and locations. Four traits related to biomass,
plant height, and leaf area were measured by HTP using UAV. In
total, 213 high-quality, replicated, and conserved associations were
detected in genomic intervals, including many strong candidate
genes. Watanabe et al. [32] measured the height of 115 sorghum
germplasm accessions with HTP using UAV and evaluated the
potential of HTP to provide phenotypic training data in a GS
model. Although phenotypic correlation was not high, GS of
plant height as measured by HTP using UAV was highly correlated
with those measured manually. These results suggest the consider-
able potential of HTP using UAV for genomic-assisted breeding
through GWAS and GS.
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To successfully combine HTP with GWAS or GS, a novel
viewpoint different from the analysis of conventional phenotypic
data is necessary. Since HTP enables non-destructive and frequent
measurements for large-scale field tests, a target trait can be
measured as high-density time series data and as high-density data
with coordinate information. Thus, spatial-temporal continuity and
change can be taken into account in GWAS and GS models. For
instance, Elias et al. [57] fitted a model with a spatial kernel as well
as a kernel-based genomic relationship matrix to cassava agronomic
trait data to account for the spatial heterogeneity in the field and
showed that the prediction accuracy increased after accounting for
the spatial variation. Moreover, multiple sensors are commonly
employed in HTP, each of which can acquire high-dimensional
data (e.g., hyperspectral images). Thus, for GWAS and GS using
phenotypic data collected by HTP, it is necessary to consider the
high dimensionality of the data and the large number of data
points. Spindel et al. [36] conducted a GWAS on a number of
features collected with HTP using UAV and constructed a method
and pipeline to fuse and organize numerous GWAS results. Pheno-
typic data measured by HTP can also be used in the prediction of
genotypic values of a target trait by leveraging genetic correlations
between the target trait and traits measured by HTP. Rutkoski et al.
[56] proposed a method for predicting a target trait with correlated
HTP traits, as described in the next section.

3 Integration of HTP Data into GS

3.1 Single-Trait

Analysis

Recently, there have been several studies that have integrated geno-
mic data and HTP data for prediction purposes in several crops
using different modeling techniques [13, 56, 58–63]. The integra-
tion of genomic and HTP data provides opportunities to improve
existing GS models, thus enabling breeders to select their material
more accurately and increase genetic gain. We summarize some key
methods developed for integrating high-throughput genomic and
HTP information for the purpose of increasing the accuracy of
prediction by extending the standard GS models.

We can include secondary image traits in a quantitative genetics
model using two model parameterizations. The first model explains
the ith phenotypic observation as the sum of an intercept μ com-
mon to all observations, a linear combination of p markers xij and
their corresponding marker effects bj, a linear combination of
Q secondary traits siq and their corresponding effects aq, and resid-
ual ɛi as follows:

yi ¼ μþ Pp
j¼1

xij b j þ
PQ
q¼1

s iqaq þ ɛi:
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The second model parameterization is based on covariance struc-
tures and can be obtained from the previous model by assuming
that the effects of marker bj and secondary traits aq are independent
and identically distributed draws from normal densities of the form

b j � N ð0, σ2b Þ and aq � N ð0, σ2aÞ . Then, gi ¼
Pp

j¼1xij b j and

wi ¼
PQ

q¼1s iqaq are genetic and environmental values of the ith

genotype using information from genomics and secondary traits.
From properties of the multivariate normal density, the vectors of
marker and secondary trait effects are also normally distributed,
such as g ¼ fgig � N ð0,Gσ2gÞ and w ¼ fwig � N ð0,Cσ2AÞ, where
G¼XX0∕p is a covariance matrix whose entries describe genomic
similarities between pairs of genotypes; X is the matrix of molecular
markers of order n� p; σ2g ¼ p � σ2b ; C¼SS0∕Q is a covariance
matrix whose entries describe phenotypic similarities based on
image secondary traits data for each pair of observations; S is the
matrix of secondary traits of order n�Q; and σ2A ¼ Q � σ2a . This
parameterization assumes that all of the secondary traits equally
contribute to explain the phenotypic variations of the traits of
interest. One of the advantages of using this second parameteriza-
tion is that it is possible to evaluate the contribution of the genomic
and HTP components for explaining phenotypic variability by
comparing the estimated variance components associated with
each of these terms.

The majority of models developed focus on predicting a single
trait, namely, grain yield. HTP can measure traits that are shown to
be highly correlated with grain yield, such as the spectral reflectance
of the canopy and canopy temperature [64]. A VI is used to sum-
marize the spectral reflectance of the canopy scores [61]. However,
because the VI is calculated using only a subset of the available
wavelengths, it does not take advantage of all of the HTP data.
There are several approaches for incorporating all of the HTP
wavelengths and the plot-level VI measurements into GS models.
Rutkoski et al. [56] showed that the integration of VI and canopy
temperature into a genomic best linear unbiased prediction
(GBLUP) model could increase the prediction accuracy by 70%
compared to that of a univariate baseline model in wheat data.
Aguate et al. [65] showed that using bands as predictors increased
prediction accuracy over that of VI. They used ordinary least
squares, partial least squares, and a Bayesian shrinkage model to
incorporate wavelengths into a GS model in maize. A similar obser-
vation was made by Montesinos et al. [66], who compared predic-
tion model performance when all of the wavelengths were
incorporated with that of a subset of the wavelengths in wheat.
They concluded that using all of the wavelengths resulted in higher
prediction accuracy.
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3.2 Multi-Trait

Analysis

Sun et al. [59] predicted grain yield in a two-step procedure in
wheat data. First, they collected data on canopy temperature and VI
as secondary traits (which are correlated with grain yield) and
modeled the secondary traits using the genetic marker and envi-
ronmental effects. They applied a mixed model for predicting grain
yield without considering the secondary traits as covariates. How-
ever, they used the secondary traits to develop a multivariate model
to predict grain yield, which is the primary trait. The secondary
traits were measured in a longitudinal fashion, i.e., at several time
points throughout the growing season. They implemented and
compared the repeatability, multi-trait, and random regression
(RR) models that can be used for modeling longitudinal data. In
the second step of the GS, the results from the repeatability, multi-
trait, and RR models were used as BLUP, and a univariate predic-
tion model was compared to bivariate and multivariate models.
Only grain yield was included, and the secondary traits were
excluded in the univariate model. In one of the multivariate predic-
tion models, the secondary traits were included both in the training
and testing sets, and in the other multivariate prediction model the
secondary traits were included only in the training set. The bivariate
prediction model included grain yield and one of the secondary
traits. Their results showed that the multivariate prediction model
that incorporated the secondary traits in both the testing and
training sets had an advantage over the other models in terms of
prediction accuracy. However, it was not clear which of the first
models (repeatability, multi-trait, or RR) performed the best
because the results depended on the environmental conditions.
Nonetheless, the results clearly demonstrated the advantage of
using HTP data in GS applications.

Crain et al. [13] compared four models using wheat data: (1) a
regular GS model, (2) a univariate model in which grain yield was
the response and HTP data were predictors, (3) a model that was
the combination of models 1 and 2, and (4) a multi-trait model that
included grain yield, canopy temperature, and VI measurements.
The results showed that the addition of HTP data increased the
prediction accuracy. They found that the multi-trait model exhib-
ited a 7% gain in terms of prediction accuracy, indicating that
collecting multiple HTP measurements has the potential to
increase genetic gain through the improvement of prediction mod-
els. Juliana et al. [62] applied multivariate prediction models to
compare standard GS with a pedigree- and HTP-based prediction
model. They discussed the situations in which each model can be
useful and the importance of implementing the correct models in
the correct stage of the breeding pipeline. The authors elaborated
on the importance of the family structure and of the secondary
HTP traits being highly correlated with the primary phenotypic
trait, as these components are influencing factors in prediction
performance.
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3.3 Genotype by

Environment

Interaction

Although all of the studies described above considered approaches
to integrate HTP into GS, they did not apply interaction effect
models. However, there are multiple lines of evidence that GS
models with interaction effects have the potential to outperform
competing models with only additive effects [67–69]. Montesinos
et al. [70] presented one of the first studies of HTP showing the
impact of including the interaction between hyperspectral bands
and environments (band � environment). These authors found
that the model with the band � environment interaction outper-
formed all of the models without this interaction term. Jarquin
et al. [63] used prediction models that incorporated line, environ-
ment, marker genotype, canopy coverage image information, and
their interactions in soybean. They evaluated six main effects’mod-
els that included combinations of line, environment, marker geno-
type, and canopy coverage image information; seven models with
two-way interactions among the components; and two models with
a three-way interaction between environment, marker genotype,
and the canopy coverage data. Under the GBLUP model, they
modeled the interaction components as the Hadamard product
[71] of the relationship matrices obtained from genetic marker
and canopy coverage image information according to the reaction
normmodel [9]. Themodel performance was evaluated using three
cross-validation (CV) schemes: CV2, CV1, and CV0. CV2 assumed
an incomplete field trial, in which some lines are observed in some
environments but not in others. CV1 was the case in which one
predicts the performance of a new line in environments in which
some other lines were evaluated. The goal of CV0 was to predict
the performance of already tested lines in untested environments.
When grain yield was the target trait, the advantage of including the
canopy coverage measurements and the interactions among
marker, environment, and canopy coverage measurement was
clearly shown. The highest predictive abilities for CV2 and CV1
were delivered by the models that included a three-way interaction
among marker genotype, canopy coverage image data, and envi-
ronment, while for CV0, the model with interactions between
marker genotype and environment, and between canopy coverage
image information and environment produced the greatest accu-
racy. The study also evaluated the effectiveness of canopy coverage
image data from early stages and compared it with the case in which
the canopy coverage image data was collected throughout the
growing season. The results indicated that the information col-
lected in the early stages was sufficient for prediction and that the
additional data collected in the later stages did not improve the
prediction models significantly. The practical implication of this
finding is important, as it shows that the same prediction accuracy
can be achieved using fewer resources (time, measurements, and
costs).
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Krause et al. [61] used multi-kernel, multi-environment
GBLUP models including genetic marker or pedigree, environ-
mental, and hyperspectral band information for predicting grain
yield in wheat. They found that when marker genotype or pedigree
data are not available, the main effects model using the hyperspec-
tral band data provided a similar accuracy of prediction compared
to the main effects models including marker or pedigree informa-
tion. Additionally, the model with interactions outperformed the
main effects models. Their findings differed from those of Jarquin
et al. [63] with regard to the effectiveness of including partial HTP
data. They concluded that the prediction accuracy increased when
the HTP data from later stages were included. However, this dif-
ference is expected, as the crop development for wheat is signifi-
cantly different from that for soybean. Finally, Montesinos et al.
[70] and Montesinos et al. [72] showed the advantages of
performing functional analysis for reducing data dimensionality to
extract a higher signal-to-noise ratio for each observed value. In
addition, Montesinos et al. [70] showed that when the HTP col-
lected over multiple time points are combined using functional
analysis, a small increase in prediction accuracy can be achieved
relative to that of models that use data from a single time point.

4 Utilizing Image-Derived Longitudinal Traits for Genetic Studies in Plants

The observable phenotype at a given time is the culmination of
numerous biological processes that have occurred prior to observa-
tion. For example, consider a cereal such as wheat at maturity. The
total above-ground biomass can be separated hierarchically into a
number of distinct organs. The whole plant can be partitioned into
main and auxiliary tillers, which can be further partitioned into leaf
blades, leaf sheaths, and stems. This process can proceed further to
lower organization levels, separating these organs into tissues and
cellular components. At each level, the pattern timing of develop-
ment is tightly controlled by complex genetic networks that, at the
organ level, control the onset of primordial development and initi-
ation of growth and, at the plant level, the transition from vegeta-
tive to reproductive development.

An additional layer of complexity is added to this when the
effect of the environment on these processes is considered. The
appearance of the plant at maturity is certainly a product of its
genetic makeup; however, the processes mentioned above are all
tightly linked to the environment. The total size of the plant at
maturity is a product of the resources (e.g., light, nutrients, and
water) that were available throughout its life cycle. Plants need light
and carbon dioxide to produce sugars through photosynthesis.
Nutrients are combined with these sugars to generate nucleotides,
proteins, and metabolites. Limitations on any of these inputs will
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slow or stunt growth. In addition to plant growth, the transition
between developmental states is also linked directly to the environ-
ment. Several studies have shown that drought events can lead to
earlier flowering and accelerated post-anthesis development
(reviewed by Shavrukov et al. [73]). Therefore, the phenotype is
not a static entity. The observable phenotype is the result of
dynamic genetic processes, the changing external environment,
and the dynamic interplay between the two.

For most genetic applications, plants are often phenotyped at
only one or a few time points. These phenotypes are an incredibly
informative summation of the processes that have occurred over the
life cycle of the plant, and they have been used quite successfully to
select for a variety of complex traits. While for many applications
these single time point phenotypes may be sufficient, they fail to
capture the dynamic processes that have led to the observable
phenotype. In most genetic studies, phenotypic evaluation is the
largest, most time-consuming activity. Typical genetic studies con-
sist of a mapping population with hundreds to thousands of indi-
viduals that are grown in replicates. Thus, for these studies,
phenotyping at one time point is often a huge commitment, while
evaluation at multiple time points is often unfeasible.

In the last decade, the construction and accessibility of high-
throughput phenotyping platforms have provided an attractive
means for generating phenotypic data throughout the duration of
a study in a non-destructive manner for a number of economically
important crop species [14, 32, 37, 74]. These platforms have been
successfully deployed in controlled environments to quantify
growth and physiological processes in response to drought and
salinity [75, 76]. Moreover, with the growing popularity of UAVs
in the consumer market, a vast selection of hardware can be
obtained at relatively low cost [32]. These can be outfitted with
various sensors or cameras and deployed routinely in the field to
capture trait development over the growing seasons. In crop spe-
cies, these temporal phenotypes have been used as covariates in
genomic prediction frameworks to improve prediction accuracy
for end-point phenotypes, such as yield [13, 59, 63]. However,
analysis of the longitudinal trait itself has been largely confined to
genetic inference in crops species, while genomic prediction has
been applied largely to perennial species [77–79]. In the following
section, we describe several approaches for genomic prediction of
the longitudinal phenotype itself.

4.1 Single Time Point

Genetic Inference

A seemingly straightforward approach for assessing dynamic
genetic effects underlying longitudinal traits is performing linkage
or association analysis at each time point independently [80–83]. In
one of the first applications of HTP for genetic studies in plants,
Moore et al. [83] used an image-based platform to quantify root
gravitropic responses in Arabidopsis biparental mapping
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populations. The authors used a step-wise mapping approach at
each time point to identify time-dependent quantitative trait loci
(QTL) and used a post hoc approach to combine information on
QTL detected across multiple time points. The post hoc approach
effectively used two metrics to classify QTL into a persistent class,
by averaging the LOD scores across time points, and transient
QTL, by taking the maximum LOD across all time points. While
this post hoc approach effectively combines statistics across time
points and successfully classifies the temporal genetics of root grav-
itropism, the single time point mapping approach itself does not
explicitly model the covariance across time points. Thus, the actual
genetic inference step does not fully capture the phenotypic
trajectories.

4.2 Functional

Mapping

Several other approaches have been proposed that directly consider
the trait trajectories for genetic analyses. With these approaches, the
trait values across all time points can be modeled using parametric
or non-parametric mathematical functions. These models describe
the phenotypic trajectories using a few parameters (for a review of
parametric models in the context of plant growth, see Paine et al.
[84]). Once an appropriate model has been chosen, genetic infer-
ence or prediction can proceed using a single-step or two-step
approach.

4.2.1 Single-Step

Functional Mapping

In the single-step functional mapping approach, model fitting and
genetic analyses are performed within a single statistical framework.
In the plant community, the single-step approach for functional
genetic inference/mapping was first proposed by Ma et al. [85] to
map QTL for stem diameter in Populus. Since then, the functional
mapping approach has been applied to longitudinal traits in other
species, such as humans and mice, and has been extended into the
mixed model framework used for GWAS [86–90]. The advantages
of the single-step functional mapping approach are that it considers
the full trait trajectories over time, yielding loci that influence the
curve itself, and captures the covariance across time points, which
should reduce residual variance and improve statistical power
[88]. Essentially, at each locus, the single-step functional mapping
approach models the mean trajectories for each genotype and tests
whether the time-dependent genetic effects are non-zero.

There are two important considerations for the single-step
functional mapping approach: (1) the choice of function to model
the mean trajectories of each genotype, and (2) the appropriate
residual covariance structure to account for the temporal nature of
the data. The function to model the mean trajectories can be
parametric or non-parametric and can be selected based on some
prior knowledge of the phenotypic trajectories. For well-studied
traits, such as growth, a number of parametric options exist, are
biologically meaningful and can be easily applied to the
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longitudinal data set [84]. In cases in which no prior knowledge
exists about the phenotypic trajectories, a nonparametric function,
such as orthogonal Legendre polynomials or B-spline functions,
can be utilized. The nonparametric functions are described in
greater detail below. A number of covariance structures can be
used to account for the temporal relationships among observations.
The choice will be dependent on the balance between statistical
efficiency and robustness. In the most robust case, the unstructured
covariance matrix, the variance and covariance at each time point
are unique and estimated from the data. While this places no con-
straints on the variance–covariances, the number of parameters that
must be estimated can be prohibitively large for most studies. In
many cases, simpler structures may be nearly as robust while esti-
mating far fewer parameters.

4.2.2 Two-Step

Functional Mapping

In contrast to the single-step functional mapping approach, the
two-step approach performs the model fitting and genetic analysis
in two separate steps. First, the phenotypic trajectories are modeled
for each individual, and the model parameters are used as derived
traits for subsequent genetic analyses (e.g., GWAS, linkage analysis,
or GS). This two-step approach has been successfully used to
examine the genetic basis of rosette growth in Arabidopsis and for
GWAS and GS of early vigor in rice [91, 92]. The advantages of this
approach are that it is conceptually simple and easy to implement.
Moreover, for most popular growth models, the parameters have
biological meaning. For instance, growth can be modeled over the
life cycle of the plant using a 3-parameter logistic function. Here,
the inflection point can be calculated, which represents the transi-
tion from vegetative to reproductive growth. Thus, the researcher
can select a specific attribute to study and select a specific model
parameter that represents that attribute for analysis. Moreover,
outside of genetic mapping, these parameters may provide
biological insight into a plant’s phenotypic development. For
instance, Campbell et al. [92] targeted a specific model parameter
that described a plant’s growth rate and showed that the plant
hormone gibberellic acid may influence natural variation for the
rate-controlling parameter. However, the major disadvantage of
this method is that information is lost between the functional
modeling and genetic analysis steps. Since environmental factors
are not included in the functional modeling step, the residuals likely
contain important information regarding non-genetic components
of the phenotypic variance for the longitudinal phenotype.

4.3 Insights from

Animal Breeding for

Genomic Prediction

Using Longitudinal

Traits

While the use of longitudinal phenotypes is relatively new in plant
science, animal breeders have targeted longitudinal traits for dec-
ades [93]. In animal breeding, breeders are often interested in the
development of a trait across an animal’s life. For instance, in dairy
cattle, test-day milk yields are collected routinely. Moreover, other
traits, such as feed intake, growth, and egg production [94–97],
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have also been examined in a longitudinal framework. With the
extensive use of these traits in animal breeding, numerous frame-
works have been well developed to accommodate the time axis and
have been used extensively for inference on genetic and environ-
mental variance components, as well as pedigree and GS.

In the following subsection, we discuss several approaches that
have been used for pedigree- or genomic-based prediction in ani-
mal breeding in a context that is applicable to plant breeding with
HTP platforms. As mentioned above, a naive approach for GS using
longitudinal data would be a univariate approach, in which a con-
ventional mixed model is fitted at each time point. Here, we intro-
duce the concept of longitudinal GS from a multivariate
framework, as this is a relatively simple extension of the univariate
approach, and extend these concepts to covariance functions and
RR models that have been pioneered in animal breeding.

4.4 Multivariate

Approaches for

Longitudinal Genomic

Prediction

To capture the covariance between time points, a logical progres-
sion from the univariate approach is to utilize a multivariate frame-
work for longitudinal data. Thus, rather than considering the
longitudinal trait as a consecutive series of measurements on the
same trait, with the multivariate approach, we essentially ignore the
order of the series and treat each time point as a separate trait. The
multivariate framework allows each time point to have a unique
variance and unique covariances between time points. The multi-
variate GS framework is well developed and has been widely utilized
in both plant and animal systems. Moreover, the extension from the
univariate approach is relatively straightforward.

Assume a simple case in which we are given three consecutive
measurements for each individual. The model for each trait can be
written as

y1 ¼ X1b1 þ Z1u1 þ ɛ1 ð1Þ

y2 ¼ X2b2 þ Z2u2 þ ɛ2 ð2Þ

y3 ¼ X3b3 þ Z3u3 þ ɛ3 ð3Þ
where yi is the vector of observations for trait i; Xi and Zi are the
incidence matrices for fixed effects and random effects, respectively,
for trait i; ui is the vector of random genetic effects for trait i; and ɛi
is the vector of residuals for trait i. Thus, the multivariate model is

y1

y2

y3

2
664

3
775 ¼

X1 0 0

0 X2 0

0 0 X3

2
664

3
775

b1

b2

b3

2
664

3
775þ

Z1 0 0

0 Z2 0

0 0 Z3

2
664

3
775

u1

u2

u3

2
664

3
775þ

ɛ1

ɛ2

ɛ3

2
664

3
775 ð4Þ
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Moreover, as mentioned above, we assume unique variances
and covariances for each trait/time point.

var

u1

u2

u3

ɛ1

ɛ2

ɛ3

2
666666666664

3
777777777775

¼

Gσ2g11 Gσ2g12 Gσ2g13 0 0 0

Gσ2g21 Gσ2g22 Gσ2g23 0 0 0

Gσ2g31 Gσ2g32 Gσ2g33 0 0 0

0 0 0 Iσ2ɛ 11 Iσ2ɛ 12 Iσ2ɛ 13

0 0 0 Iσ2ɛ 21 Iσ2ɛ 22 Iσ2ɛ 23

0 0 0 Iσ2ɛ 31 Iσ2ɛ 32 Iσ2ɛ 33

2
6666666666664

3
7777777777775

ð5Þ

Thus, for this simple case, we are capturing the full covariance
across the three time points and leveraging this covariance to
predict unique genetic values at each. However, notice the dimen-
sions of the covariances σ2g and σ2ɛ . Here, we must solve for 12 para-
meters. If we have a very large population, this may not be an issue.
However, if we consider a more realistic data set from HTP, it is
likely that we will have many more time points. Thus, for t time
points, we will need to estimate t variances and t(t�1)∕2 covar-
iances for both the genetic effects and residuals. For most HTP studies,
this will create unnecessary computational demands. Moreover, addi-
tional challenges could be experienced if the parameter estimates are
near the bounds, which may yield inaccurate estimates of variance
components. Thus, when faced with larger longitudinal data sets (t >
5), the researcher should question whether it is necessary to esti-
mate each covariance. In cases in which the measurements are taken
at short intervals within a given developmental period, it is likely
safe to assume that the genetic variances between adjacent time
points will be very similar. Therefore, a much simpler model may
still capture much of the covariance while estimating fewer para-
meters. This is discussed in detail below. For other cases in which
fewer measurements are recorded over more widely spaced inter-
vals, the previous assumption may not hold true, and the full,
unstructured matrix used in the multi-trait framework may be a
more accurate model.

4.5 Covariance

Functions and Random

Regression Models for

Longitudinal Genetic

Prediction

In the multi-trait framework, we treat the longitudinal phenotype,
say growth, as a collection of independent traits; as a result, we are
limited to making predictions at time points with records. How-
ever, in most longitudinal studies, we are interested in learning
about the development of a continuous trait over time and do so
by taking measurements at discrete time points. The time points or
intervals themselves may be selected somewhat arbitrarily, and we
seek to fill in information between time points. Thus, to capture the
full trajectory of trait development, we can separate the trajectory
into infinitely smaller intervals. Therefore, if we view the longitudi-
nal trait as an “infinite-dimensional” trait, we can see that the
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multivariate framework is inadequate, in that it does not directly
consider the time axis and it does not allow us to make predictions
at time points without observations.

Kirkpatrick et al. [98] initially proposed the use of covariance
functions (CFs) for the analysis of “infinite-dimensional” traits. A
CF is simply the infinite-dimensional equivalent of a covariance
matrix for a given number of time points. Using this approach,
the covariance between any two records measured at given time
points can be obtained using only the time points and some coeffi-
cients. For an “infinite-dimensional” trait, there can be an infinite
number of coefficients; however, in practice, the number of coeffi-
cients is dependent on the number of time points with records, with
the maximum number of coefficients being t(t+ 1)∕2.

Following the example described in the multi-trait section
above, we provide a brief example of the CF approach. Assume
we have a trait measured at three time points using the covariance
matrix in Kirkpatrick et al. [98]. Using the multi-trait approach, we
estimate the 3�3 additive genetic covariance matrix (Σ̂) and esti-
mate the variances and covariances at each of the three time points.
The goal of the approach described by Kirkpatrick et al. [98] is to
represent the additive generic covariance matrix (Σ̂) as a continuous
covariance function (K ) given data collected at discrete time points.
Although a number of methods can be used to estimate K from Σ̂,
orthogonal polynomials are used most often due to the low corre-
lations among the estimated coefficients [99].

Given a covariance function with a full rank fit (e.g., order of
polynomials is equal to the number of time points, k¼ t),
Kirkpatrick et al. [98] showed that the observed covariance matrix

Σ̂ can be expressed as Σ̂ ¼ ΦKΦ0 , where K is a coefficient matrix
associated with the CF, and Φ is a matrix of Legendre polynomials
of order t by k, the order of Legendre polynomials (in this case
k¼ t). Φ is defined by the Legendre polynomial functions via
Φ¼M Λ. With Legendre polynomials, the time points are standar-
dized so that they span an interval of -1 to 1, and here,M is a matrix
of the polynomials of standardized time points. Λ is a matrix of
coefficients of Legendre polynomials of order k� k. The first two
Legendre polynomials are P0(t)¼1 and P1(t)¼ t, and the
subsequent jth Legendre polynomials are given by P jþ1ðtÞ ¼
1
jþ1 ð2j þ 1ÞtP j ðtÞ � jP j�1ðtÞ. These can be normalized to ϕj via

ϕ j ¼
ffiffiffiffiffiffiffiffiffiffiffi
ð2jþ1Þ

p
2 P j ðtÞ . Thus, the first three normalized Legendre

polynomials will be P0(t)¼0.707, P1(t)¼1.2247t, and P2(t)¼�
0.7906+2.3717t2. Thus, Λ is
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Λ ¼
0:7071 0 �0:7906

0 1:2247 0

0 0 2:3717

2
664

3
775 ð6Þ

It is of particular importance to note that Φ is not dependent on
the values nor the time points in the data set; onlyK is. Thus, given
the 3�3 covariance matrix, Σ̂ , the covariance between any two
time points, can be obtained using K ða1, a2Þ ¼P1

i¼0

P1
j¼0Kijϕiða1Þϕ j ða2Þ , and the breeding value at any time

point can be obtained using t ¼
Pk�1

i¼0ϕiðdtÞui . Moreover, with a
full rank fit, the covariance matrix obtained is equivalent to that
obtained using the multivariate approach in the previous section.

In most cases, the full covariance matrix Σ̂ is unknown; there-
fore, it must be estimated directly from the data. As shown by
Meyer and Hill [100], this can be done by a reparameterization of
the multivariate or “finite-dimensional” approach. However, in
many studies, particularly those focused on the analysis of longitu-
dinal milk production in dairy cattle, RR models (e.g., test-day
models) are most commonly used. The RR approach proposed by
Schaeffer [93] regresses the phenotypic trait trajectories directly on
Φ to estimate K. As demonstrated by Meyer and Hill [100], both
the CF and RR approaches are equivalent. The general form of the
RR model is

ytij ¼ FEi þ
Pnf
k¼0

ϕ j tkβk þ
Pnr
k¼0

ϕ j tku jk þ
Pnr
k¼0

ϕ j tkpe jk þ ɛtij

ð7Þ
Here, FEi is the fixed effect for the ith group; ϕjtk is the kth
Legendre polynomial for individual j at time t; βk is the fixed
regression coefficient for the kth Legendre polynomial, which
represents the overall mean trait trajectory for the population or
group; ujk is the genetic value for the kth Legendre polynomial for
the jth individual; and pejk is the permanent environmental effect
for the kth Legendre polynomial for the jth individual. This perma-
nent environmental effect is a stable, perpetual, non-genetic effect
that influences an individual’s trait trajectory. It is assumed to be
common to all repeated observations on the same individual. Thus,
e can be considered temporary environmental effects. In matrix
form, the RR model can be written as y¼Xb+Za+Qp+ ɛ.

In the examples above, we used a full-order polynomial to
model the covariance across time points. As in the multivariate
example, this requires estimation of a large number of parameters
and in most cases is computationally unfeasible and could lead to
convergence problems or inaccurate parameter estimates. In most
cases, it is much more advantageous to fit a simpler model using a
reduced-order polynomial (k< t). This effectively allows fewer
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parameters to be estimated while still adequately describing Σ̂ .
Generally speaking, the goodness of fit will increase as the number
of function parameters describing the curve increases
[101]. Campbell et al. [102] used RRmodels for rice shoot growth
trajectories and demonstrated that the model could be used for
longitudinal genomic prediction. Baba et al. [103] showed the
utility of a multi-trait RR model for genomic prediction of daily
water usage in rice through joint modeling with shoot biomass.

5 Conclusions

This chapter described statistical methods for analyzing large-scale
HTP data in quantitative genetics. We contend that the integration
of HTP data into quantitative genetics models triggers a great leap
forward in plant breeding. In particular, we discussed (1) the
genetic gain that can be achieved using HTP data, (2) the use of
HTP data as predictive covariates in GS models, and (3) the mod-
eling of temporal HTP data using RR models. In GS, it is known
that the accuracy of genomic prediction, and thus the response to
selection, decreases as the selection cycle advances [104, 105]. To
maintain the response to selection, it is necessary to update the
model on a regular basis [105–107]. In order to update the model,
it is necessary to conduct a field test to measure phenotypes and to
obtain genome-wide markers for many genotypes. At this step,
phenotypic measurement for model updating may become a serious
bottleneck of GS breeding. Thus, it is important to utilize HTP,
which can evaluate many genotypes and possibly shorten the time
required for selection.

High-throughput phenotyping and phenomics offer numerous
opportunities to understand plant development, the genetics of
quantitative traits such as yield, and their connection to the envi-
ronment. The utilization of HTP data that are correlated with traits
of interest can change how breeders select their material for
advancement. Incorporating HTP data into prediction models has
the potential to increase prediction accuracy, thus enabling plant
breeders to select and discard more accurately. Although the
reviewed studies considered different models, they concluded that
regardless of the model configuration, the inclusion of HTP data
increased the prediction performance when it was combined with
different data types (marker genotype, pedigree, and environment).
Additional gains can be expected when considering interactions
with environmental factors.

The RR approach offers several advantages compared to the
multivariate approach. As mentioned above, the RR approach
allows environmental effects to be partitioned into permanent and
temporary environmental effects. Moreover, the RR approach
models the individual-specific deviations from the mean phenotypic
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trajectories of the population. This allows the shape, amplitude, and
intercept of the phenotypic trajectories to be unique for each
individual and assumes that the genetic and permanent environ-
mental effects are not constant throughout trait development.
Thus, the RR model should more accurately reflect the biological
processes that give rise to the phenotype. Furthermore, RR models
offer a robust framework for fitting reduced-fit covariance func-
tions. This offers a computational advantage over the multivariate
approach in that it allows the model to converge more quickly.
Moreover, by only estimating the parameters that are necessary to
describe the data, sampling errors can be minimized. Finally, the
RR approach provides a robust framework that allows the
researcher to study how genetic variability changes over time and
enables selection of individuals to alter phenotypic trajectories
over time.
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López A, Crossa J, los Campos G,
Alvarado G, Suchismita M, et al (2017) Pre-
dicting grain yield using canopy hyperspectral
reflectance in wheat breeding data. Plant
Methods 13(1):4

67. Roorkiwal M, Jarquin D, Singh MK, Gaur
PM, Bharadwaj C, Rathore A, et al (2018)
Genomic-enabled prediction models using
multi-environment trials to estimate the effect
of genotype � environment interaction on
prediction accuracy in chickpea. Sci Rep
8(1):11701

68. Sukumaran S, Crossa J, Jarquı́n D, Reynolds
M (2017) Pedigree-based prediction models
with genotype � environment interaction in
multienvironment trials of CIMMYT wheat.
Crop Sci 57(4):1865–1880

69. Jarquı́n D, Lemes da Silva C, Gaynor RC,
Poland J, Fritz A, Howard R, et al (2017)
Increasing genomic-enabled prediction accu-
racy by modeling genotype � environment
interactions in Kansas Wheat. Plant Genome
10(2):plantgenome2016–12
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72. Montesinos-López A, Montesinos-López
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