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Abstract

Ribosomes are universally conserved ribonucleoprotein complexes involved in the decoding of the genetic
information contained in messenger RNAs into proteins. Accordingly, ribosome biogenesis is a fundamen-
tal cellular process required for functional ribosome homeostasis and to preserve satisfactory gene expres-
sion capability.

Although the ribosome is universally conserved, its biogenesis shows an intriguing degree of variability
across the tree of life. These differences also raise yet unresolved questions. Among them are (a) what are, if
existing, the remaining ancestral common principles of ribosome biogenesis; (b) what are the molecular
impacts of the evolution history and how did they contribute to (re)shape the ribosome biogenesis pathway
across the tree of life; (c) what is the extent of functional divergence and/or convergence (functional
mimicry), and in the latter case (if existing) what is the molecular basis; (d) considering the universal
ribosome conservation, what is the capability of functional plasticity and cellular adaptation of the ribosome
biogenesis pathway?

In this review, we provide a brief overview of ribosome biogenesis across the tree of life and try to
illustrate some potential and/or emerging answers to these unresolved questions.
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1 In Search of Unity?

From an historical perspective, the search for unifying concepts in
Science in general and in Biology in particular has been a key step to
our fundamental and general understanding of molecular processes
across the tree of life [1-7]. This idea can be easily grasped by
famous aphorism variations around this theme: “From the elephant
to butyric acid bacterium—it is all the same!” ([8], cited in [2]) or
“Anything found to be true of E. coli must also be true of
elephants” (attributed to Jacques Monod, 1954 [2]). However,
there are also valid arguments to think that elephants and bacteria
are characterized, to some extent, by distinguishable biological
properties. Accordingly, molecular processes, including ribosome
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biogenesis, have been dissected from two albeit different and in
part contra intuitively but cross-fertilizing viewpoints: a unifying
and a dividing functional perspective [9-11]. As such compara-
tive—ribosome biogenesis—biology may be torn apart between
defining the real weight of functional similarities and differences
which biological systems may adopt. In any case, these similarities
and differences can only be appreciated in the light of detailed
knowledge about the scrutinized biological system across a larger
number of entities.

In this chapter, we attempt to provide a short comparative
overview on the molecular principles required for ribosome bio-
genesis. In addition, we like to highlight few challenges and sur-
prises that may alter our unifying/differential view on ribosome
biogenesis across the tree of life.

2 Ribosome Biogenesis

2.1 Once Upon a
Time . .. Ribosome
Basic Facts

Ribosomes are universally conserved ribonucleoprotein particles
allowing the decoding of the genetic information carried within
messenger RNAs into amino-acid chains, the proteins [12]. Cyto-
solic ribosomes are composed of two ribosomal subunits, the small
and the large ribosomal subunit (SSU and LSU, respectively)
[12]. Strikingly, ribosomes are formed around a universally con-
served structural core composed of three ribosomal RNA (rRNAs)
molecules and 33 universally conserved ribosomal proteins (r-pro-
teins) [13, 14]. Cytosolic ribosomes isolated from prokaryotic and
eukaryotic organisms differ by the numbers and composition of
their structural components, the r-proteins and rRNAs. Typically,
cytosolic bacterial and archaeal 70S ribosomes are formed by the
30S (SSU) and 508 (LSU) ribosomal subunits [15-17]. Those are
themselves composed of varying amounts of r-proteins (Figs. 1 and
2) which interact with the SSU 16S rRNA and LSU 23S and 58
rRNAs. These rRNAs also present various degree of organism’s
specific sequence size variations [54-56].

In eukaryotic cells, cytosolic 80S ribosomes are formed by the
408 (SSU) and 60S (LSU) ribosomal subunits [57, 58 ]. Concerning
the amounts of ribosomal proteins, eukaryotic ribosomal subunits
show also some, however less pronounced intra domain variations,
compared to those observed across the bacterial and archaeal king-
doms (Figs. 1 and 2) [13, 14]. A striking feature of eukaryotic
ribosomes is the presence of longer and additional rRNAs, the SSU
18S rRNA and the LSU 25 /28S, 5.8S and 5S rRNAs [44, 59, 60].

In eukaryotes, rRNAs size expansion occurs by virtue of incor-
poration of additional rRNA sequences, the expansion segments,
within the universally conserved prokaryotic-like rRNA core
[23, 24, 61]. These expansion segments are varying in size and
composition across eukaryotes [23, 24, 61, 62] and may have
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Fig. 1 | Ribosome and ribosome biogenesis key features overview across the tree of life. (@) Summary of
ribosome and ribosome biogenesis key features. Modified from [18] according to ' [19-22]; ? [23-27]; 3
[13, 14, 28]; * [29-35]; ° [36-43]; ° [10, 44-48]. Sso—Saccharolobus solfataricus, Hv—Haloferax volcanii;
Tko—Thermococcus kodakarensis; Hs—Homo sapiens; Sc—Saccharomyces cerevisiae. (b, ¢) Summary of
shared ribosomal proteins (b) and ribosome biogenesis factors (¢) across the three domains of life. Numbers of
r-proteins and putative ribosome biogenesis factors sequence homologues shared between bacteria, archaea,
and eukarya (BAE); bacteria, archaea (BA), archaea and eukarya (AE), bacteria and eukarya (BE), or unique to
bacteria (B), or archaea (A), or eukarya (E), are indicated [based on [10, 13, 14, 28, 41, 44-51] and our
unpublished results]. (Modified from Londei and Ferreira-Cerca [52])

originated early on during rRNA evolution, since some progenitors
of these expansion segments have been traced within modern
archaeal but also in some case in bacterial rRNAs [23-25, 63-66].

The diverse composition of r-proteins which is, up to now,
apparently more predominant in bacteria and archaea [13, 14,
55], could indicate that in these cellular contexts, ribosome assem-
bly, that is, the assembly of r-proteins with the rRNAs, and ribo-
some function may tolerate a higher degree of flexibility than in
most eukaryotes. It is also interesting that reductive evolution (loss)
of r-proteins seems to prevail in archaea [13, 14, 25].
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Fig. 2 | Exemplary conservation of selected ribosomal proteins and putative ribosome biogenesis factors involved
in small ribosomal subunit biogenesis in archaea. (a) Exemplary repartition of selected archaeal ribosomal
proteins shared between archaea and eukaryotes across two major archaeal Phyla. Black circle denotes the
presence, and open circle denotes the absence of sequence homologue for the indicated ribosomal protein of the
small (S) or large (L) ribosomal subunits, respectively (adapted from [13, 14] using the nomenclature proposed in
[49]). (b) Phylogenetic conservation profile of the indicated known or putative small ribosomal subunit ribosome
biogenesis factors across 1500 archaeal genomes were generated using AnnoTree (http:/annotree.uwaterloo.ca)
[63]. Archaeal classes are annotated in a phylogenetic tree (upper left) as provided by AnnoTree. Note the absence
of significant homology for Nep1 (e.g., Thermoplasmata, Halobacteria and more) or Tsr3 (e.g., Thermococcales) in
a large group of organisms, in contrast to the more widespread distribution of KsgA/Dim1, Rio1, and Nob1
archaeal homologs. Modified from Londei and Ferreira-Cerca [52]
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From a compositional point of view archaea and eukaryotes do
share common r-proteins which are absent in bacteria, whereas
bacteria do possess domain specific r-proteins [49, 61]. This corre-
lates with the increased structural similarities between archaeal and
eukaryotic ribosomal subunits in comparison to their bacterial
counterparts [25, 61, 67].

This structural similarity has been observed early on by the
group of James Lake, using electron microscopy, thereby, suggest-
ing a closer evolutionary relationship of archaea and eukaryotes
[15, 67, 68]. Recent phylogenetic analysis [69-71] and higher
resolution structure analysis of ribosomal subunits [25, 61, 67]
essentially confirm this idea but also provide additional insights
into structural differences between the different domains of life,
like for example differences in the peptide exit tunnel geometry
[72], or species-specific structural alteration which may be related
to organism-specific environmental adaptations [62, 73].

3 The Ribosome Assembly Process

The ribosome assembly process, that is, the assembly of r-proteins
with rRNAs, has been analyzed very early in the history of ribosome
research. Early work from the Nomura laboratory in the
1960-1970s aiming to understand the individual contribution of
the r-proteins /rRNA to the protein synthesis process, has led to the
first in vitro reconstitution of bacterial ribosomal subunits from its
isolated structural components [29, 30, 74-77]. These studies
were then followed by r-proteins omission experiments which cul-
minated in the establishment of the first ribosomal proteins assem-
bly maps describing r-proteins assembly dependencies [29-
31]. Beyond being biochemical masterpieces, these studies have
revealed key features of the ribosomal assembly process in bacteria.
Notably, the self-assembling nature of ribosomal subunit forma-
tion, and the fact that ribosome assembly proceeds via a combina-
tion of cooperative and hierarchical mechanisms [29-31, 78,
79]. However, these in vitro assembly experiments have been miti-
gated by the fact that they occur under nonphysiological condi-
tions, thereby suggesting the existence of in vivo facilitating
mechanisms which were discovered later [29-31, 78, 79]. Remark-
ably, in vitro reconstitution of ribosomal subunits has not only been
achieved using structural components isolated from different bac-
terial sources, but also from two evolutionary divergent representa-
tive archaea [32—-34]. In contrast, similar in vitro reconstitution of
eukaryotic ribosomal subunits solely using purified structural com-
ponents has not been accomplished to date.

Despite this fundamental biochemical difference, some aspects
of ribosome assembly in bacteria and eukaryotes follow rather
similar molecular principles, for example the hierarchical and
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cooperative assembly, or stepwise stabilization of r-proteins
[18, 78-87]. Together these similarities suggest that ribosome
assembly has likely evolved around a self-assembling (presumably
self-replicating) ancestor ribosome [26, 88], which has retained
some of its original assembly properties and constraints. Not sur-
prisingly, some of these ancestral properties/constraints are most
probably universally shared. In addition, existing molecular
mechanisms have been modified (adapted or optimized), new
ones implemented, or some maybe lost, due to organisms or com-
mon ancestor specific requirements. All these evolutionary contri-
butions are not trivial to disentangle, but functional and structural
analysis of the ribosome assembly pathway, in model and probably
most importantly in nonmodel organisms, will help us to further
clarity the inherited molecular constraints and properties underly-
ing the assembly of ribosomal subunits.

4 Facilitating Ribosome Assembly

As mentioned above, efficient ribosome assembly in vivo depends
on ribosome biogenesis factors which are collectively believed to
facilitate various aspects of the ribosome biogenesis process [44, 59,
60, 78, 79]. These ribosome biogenesis factors can be subdivided
into difterent protein classes according to their respective structural
organization and/or enzymatic activity. For example, ribosome
biogenesis progression depends on the presence of energy consum-
ing enzymes, like GTPases, ATPases (AAA ATPase, RNA helicase,
etc.). However, it is important to note that the ensemble of ribo-
some biogenesis factors differs in numbers and nature from bacteria
to eukaryotes [10, 18,44, 59, 60, 78, 79] (Fig. 1). Accordingly, the
relative domain-specific repartition of structural features and/or
enzyme activities implicated in ribosome biogenesis progression
may vary considerably between different groups and may reflect
functional adaptations within the ditferent domains of life. For
example, GTPases seem to be enriched in the bacterial ribosome
biogenesis pathway, whereas ATP-dependent processes, or
B-propeller containing proteins are enriched in the eukaryotic ribo-
some biogenesis context [10, 18, 44, 59, 60, 78, 79].

In fact, and with the exception of the (almost) universally
conserved dimethyl-transferase KsgA/Diml [89, 90], ribosome
biogenesis factors are not well conserved between bacteria and
archaea or between bacteria and eukaryotes [18, 45]. In contrast,
a substantial portion of eukaryotic ribosome biogenesis factors are
found in archaeal genomes even though our understanding of their
respective functions in archaea remains still limited [45 ]. Neverthe-
less, we and others could demonstrate some functional analogy
with their eukaryotic counterparts in vivo and/or in vitro
[18, 91-93]. These observations suggest that probably more
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(if not most) of these eukaryotic-like ribosome biogenesis sequence
signatures present in archaea might be authentic ribosome biogen-
esis factors shared between archaea and eukaryotes. In comparison,
eukaryotic ribosome biogenesis is characterized by a large increase
of eukaryotes-specific ribosome biogenesis factors (>200) [46, 59,
60]. The functional requirements for this “sudden” increased com-
plexity of eukaryotic ribosome biogenesis remains to be fully under-
stood (Fig. 1).

In addition, to composition and number variations observed in
bacteria, archaea, and eukaryotes, organisms specific variations can
be observed [18, 36, 45, 90, 94, 95]. For example, the set of
ribosome biogenesis factors vary across the archaeal phylum and
seems to follow the general trend of reductive evolution previously
observed for archaeal r-proteins (Fig. 2) [13, 14, 52]. In cukar-
yotes, ribosome biogenesis factors diversity further increases from
unicellular to multicellular eukaryotes with the addition of factors
implicated in ribosome biogenesis [46, 59, 60]. Moreover, recent
studies have provided new insights into ribosome biogenesis plas-
ticity thereby suggesting that the order of functional requirement
of some assembly factors/r-proteins can vary or be functionally
bypassed in some conditions [90, 96-100].

These observations have various implications for our under-
standing of ribosome biogenesis evolution and plasticity. For one,
the presence/absence of certain molecular components can be
tolerated owing that the proper rescue mechanisms are implemen-
ted (coevolving). Furthermore, these imply a higher functional
plasticity of the order of events within the ribosome biogenesis
pathway, whereby an alternative assembly landscape might be
used or kinetically favored depending on the cellular context
[81, 87,98, 101]. However, it should be noted that this apparent
diversity /plasticity may still converge to the formation of essential
assembly intermediates that are functionally and/or structurally
equivalent, thereby fulfilling critical inherited molecular events
required for ribosome biogenesis.

Accordingly, and despite differences in the nature and amounts
of the ribosome biogenesis factor ensemble, it is conceivable that
the core function supported by some or all ribosome biogenesis
factors are functionally equivalent across the tree of life, thereby
suggesting evolutionary constraints which would have favored the
establishment of dedicated functional mimicry rather than func-
tional divergence around the universal ribosome core [18]. It is for
example striking, that some divergent ribosome biogenesis factors
implicated in the formation of the SSU in model bacteria, archaea
and eukaryotes, are binding at very similar locations within the
nascent pre-ribosomal subunits and may fulfill similar molecular
tasks (see further discussion in [18]). For instance, the SSU rRNA
3’ end processing follows a very similar pattern which involves a
KH-domain containing ribosome biogenesis factor which interact
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and presumably stabilized the 3’ end of the 16S/18S rRNA,
thereby enabling efficient and presumably controlled endonucleo-
lytic cleavage. In E. coli, the Era GTPase, which contains a KH-do-
main [102-104] interact with the endonuclease YbeY and the
r-protein uS11 [105], thereby facilitating 3’ end maturation. In
eukaryotes, Pnol /Dim2, a KH-domain containing protein, inter-
acts with the endonuclease Nobl and both are located in proximity
of uS11. Moreover, mutational analysis revealed functional impli-
cation of uS11, Pnol /Dim2 and Nobl for 18S rRNA maturation
[106-110]. Furthermore, archacal homologues for Pnol /Dim2,
Nobl and uS11 are present in most archaeal genomes [111]. Con-
sidering that both the endonucleases and KH-domains (type
I vs. type II) are evolutionary distinct and presumably unrelated,
these observations suggest a functional convergence/mimicry at
the basis of the maturation of the 16S/18S rRNA 3’ end. Whereas,
the origin of this divergence at the molecular level is poorly under-
stood, evolutionary constraints have remarkably selected a very
similar mode of action in its principle (see further discussion in
[18]).

Further supporting the existence of functional convergence
enabling ribosomal subunit synthesis, we and others have proposed
that pseudocircularization events might represent an early common
feature of ribosomal subunits biogenesis [82, 112, 113]. However,
the implicated molecular machineries are to some extent very
different.

In prokaryotic organisms, stabilization of the 5'-3" mature ends
of the nascent rRNA precursors in a topologically limited environ-
ment is enabled by the formation of double-stranded RNA struc-
tures, the processing stems [114-121]. In all archaeal organisms
analyzed so far, this environment is further stabilized by the forma-
tion of a true covalent circularization of the pre-rRNA, in form of
precircular rRNA intermediates [112, 122, 123]. Finally, in eukar-
yotes, recent cryo-EM studies have revealed stabilization of a pseu-
docircular intermediate of the pre-LSU [124]. The formation of
this intermediate requires the participation of a distinct eukaryotes-
specific ribosome biogenesis subcomplex which may stabilize the
LSU root helix bundle prior to the assembly of the universally
conserved r-protein ul.3 [ 124, 125]. Noteworthy, early maturation
of the pre-23S rRNA by mini-RNase III, which liberates the
nascent 23S rRNA from its processing stem in B. subtilis, is stimu-
lated by the presence of ul.3 [126]. In addition, ul.3 is critical to
initiate in vitro assembly of bacterial 50S [127, 128].

In the case of the SSU, the snoRNA U3 and its associated
proteins provide a scaffold that brings distant rRNA elements in
close proximity within an encapsulated environment described as
for the 90S/SSU Processome [129-131]. However, the relative
orientation of the future mature 5'-3’ ends in these structures is not
resolved.
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Finally, the formation of the SSU central pseudoknot is a
universal feature required for SSU biogenesis and function
[132, 133]. In eukaryotes, its formation is facilitated by the
snoRNA U3, which is not present in bacteria and archaea
[44, 59, 60, 134, 135]. However alternative (U3-independent)
mechanisms, enabling the formation of the SSU central pseudo-
knot in these cellular contexts have been proposed [135-138]. For
example, sequences present in the 5’ end of the pre-16S rRNA
show potential complementarity, similar to U3, which could
hybridize with the region required for central pseudoknot forma-
tion [136, 139-141].

5 Processing and Modifications of Ribosomal RNA

Concomitantly to the assembly process, rRNAs are matured by
ribonuclease activities and modified at various positions [18, 37,
44,59,060,78,79, 114, 142].

Despite billion years of independent evolution most rRNAs are
predominantly transcribed as a polycistronic operon [19]. It is
believed that this organization is required for the efficient coordi-
nated assembly of ribosomal subunits. However, this idea has been
challenged on the one hand by the presence of naturally occurring
independent rDNA production units, and on the other hand, by
early genetic engineering experiments which have successfully sepa-
rated the polycistronic eukaryotic SSU and LSU rRNAs
[143, 144]. The immature precursor-rRNA contains flanking
regions that need to be matured by the action of various ribonu-
cleases. These maturations events are timely ordered during the
ribosomal subunit biogenesis process. This relative ordering pre-
sumably depends on specific ribosomal subunit assembly statuses
which in turn control substrate accessibility or its relative position-
ing [18, 37, 44, 59, 60, 78, 79, 114, 143, 145]. The inherent
irreversible property of these processing steps may also impose
various degrees of “quality control” constraints to the ribosome
biogenesis process in order to avoid the irreparable formation of
improperly assembled pre-ribosomal subunits.

Similar to the ribosome biogenesis factors, the set of ribonu-
cleases used in bacteria, eukaryotes and presumably in archaea are
not well conserved between these domains [18, 37, 44,59, 60, 78,
79,94, 114, 142]. In bacteria, whereas promiscuous ribonucleases
are used, eukaryotic cells have developed a set of specific enzymes to
mature their rRNAs, some of which are also present in archaea
[18, 37, 44, 52, 59, 60, 78, 79, 94, 114, 142]. Based on our
current knowledge, it is difficult to properly extract functional
similarities between the different biological systems. However, we
have previously noticed some peculiar common molecular
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principles required for the maturation of the SSU rRNA 3’-end (see
above and [18]). However, additional structural and functional
information capturing these events “in action” will be necessary
to provide invaluable insights into the structural properties of their
respective substrates [145].

Since the 1950s, ribosomal RNA modifications, which are
mostly concentrated within or closed to the ribosomal subunit
functional centers, have been known [37, 146, 147]. These mod-
ified rRNAs residues are found, to various extents, in all domains of
life [37—40]. However, the mechanisms by which these modifica-
tions are added diverge across the tree of life. On the one hand,
bacterial rRNAs are modified by stand-alone enzymes that are
dependent on a specific assembly status to recognize and modify
their respective substrates. On the other hand, and in addition to
stand-alone enzymes, archaea and eukaryotic organisms utilize an
RNA-guided modification machinery, whereby RNA-protein com-
plexes carrying methyltransferase or pseudouridylation activity are
formed (C/D and H/ACA snoRNPs, respectively). In this context,
the RNA part, which contains a sequence complementary to the
targeted rRNA region, guides the enzymatic activity to its substrate
[37, 39, 40, 148-150] (Fig. 1).

These different modes of action have important consequences
regarding substrate recognition, timing of modifications and struc-
tural constraints that may be imposed by the formation of
snoRNA::rRNA duplexes during ribosome assembly, and have
thereby probably (re)shaped several aspects of the ribosome bio-
genesis pathway [18, 37]. Whereas the relative positions of the
conserved modified residues are usually similar, the nature of the
modification itself may vary across the tree of life [ 18, 151]. Finally,
rRNA modifications appear to be dynamic across the tree of life,
whereby significant variation in nature and number of modifica-
tions is observed, and may also vary during the organisms life time
[36, 38, 39, 41, 90, 152, 153]. These variations may not only
influence ribosome function but also the ribosome biogenesis path-
way itself [18, 38, 39,90, 154].

6 Learning from Organelle Ribosome Biogenesis?

Eukaryotic organelles also contain ribosomes, which are very dis-
tinct from cytoplasmic ribosomes. Organelle’s ribosomes and their
ribosome biogenesis pathways, which have not been discussed so
far, may represent important resources to better extricate key ribo-
somal subunits biogenesis features. Organelle ribosomal subunits
are interesting from several perspectives. First, the ribosomal sub-
units composition is rather diverse across different organisms. Sec-
ond and in contrast to cytosolic ribosomal subunits, organelle
ribosomal subunits contain a reduced amount of rRNA over
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r-proteins. Third, organelle ribosomal subunits contain organelle-
specific ribosomal proteins, expending the possible diversity of the
ribosome assembly landscape. These r-proteins may replace lost
rRNA elements or stabilize the reduced rRNA core. Fourth, organ-
elle ribosomal subunits have followed complicated independent
evolutionary trajectories enabling the formation of ribosomal sub-
units optimized for the translation of a limited set of mRNAs
[49, 155-157]. In addition to ribosome biogenesis factors shared
between bacteria and organelles, recent studies have revealed the
existence of specific dedicated multiprotein machineries required
for the progression of organelle ribosome biogenesis [155, 158-
166]. Despite this apparent sequence/structural specificity,
intriguing functional similarity between cytosolic and organelle
ribosome biogenesis pathway has been proposed. Altogether,
these results suggest that despite very different evolutionary path
ribosomal subunits biogenesis may proceed via functionally equiv-
alent assembly intermediates and requires similar but diverse func-
tional innovations facilitating ribosomal subunits assembly
[155, 158-166]. Lessons from these and future studies will cer-
tainly reveal new insights on the evolution and adaptation of ribo-
somal subunit biogenesis.

7 Concluding Remarks

Despite undeniable differences between the ribosome biogenesis
pathways as known from various model organisms, it is striking that
some (key) ribosome biogenesis features have been maintained
across billions of years of evolution. However, the evolutionary
events which have led to components diversification while conserv-
ing functional similarities instead of consolidating a core of con-
served ribosome biogenesis components remain rather enigmatic.
Moreover, the extent of true functional divergence or functional
convergence, along the ribosome biogenesis pathway, needs to be
properly identified, promising exciting perspectives and challenges
for comparative ribosome biology analysis in the future. Corre-
spondingly, in the recent years metagenomics have revealed an
unexpected microbial biodiversity [ 167 ], which awaits its biochem-
ical and functional examination, and will certainly provide new
insights into conserved principles of ribosome biogenesis.

In addition, our increased understanding of supposedly simpli-
fied ribosome biogenesis pathway present in symbionts, organelles,
and organisms harboring reduced genomes, which for simplicity is
not discussed in depth, will provide supplementary functional
insights into common and specific principles of ribosome biogene-
sis [47, 55, 62, 160-162, 168].
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Finally, thanks to the massive development in the field of
genetic engineering we are probably at the very beginning of a
massive biological revolution, which will ease the characterization
of nonmodel organisms, to develop synthetic biology approaches,
and to uncover some of the most fundamental secrets of life. How
we will deal with this information will however be crucial to lever-
age the significance of these discoveries for our understanding of
ribosome biogenesis. When reaching this point, emphasis toward
functional similarity and diversity of the ribosome biogenesis pro-
cess, or its plasticity, will have to be carefully appreciated and will
require to understand the genuine functional implication of these
molecular features across different organisms’ lifestyle and organ-
isms’ specific evolutionary history [169].
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