Skip to main content

Detection of Allele-Specific 3D Chromatin Interactions Using High-Resolution In-Nucleus 4C-seq

  • Protocol
  • First Online:
Spatial Genome Organization

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2532))

Abstract

Chromosome conformation capture techniques are a set of methods used to determine 3D genome organization through the capture and identification of physical contacts between pairs of genomic loci. Among them, 4C-seq (circular chromosome conformation capture coupled to high-throughput sequencing) allows for the identification and quantification of the sequences interacting with a preselected locus of interest. 4C-seq has been widely used in the literature, mainly to study chromatin loops between enhancers and promoters or between CTCF binding sites and to identify chromatin domain boundaries. As 3D-contacts may be established in an allele-specific manner, we describe an up-to-date allele-specific 4C-seq protocol, starting from the selection of allele-specific viewpoints to Illumina sequencing. This protocol has mainly been optimized for cultured mammalian cells, but can be adapted for other cell types with relatively minor changes in initial steps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vermunt MW, Zhang D, Blobel GA (2019) The interdependence of gene-regulatory elements and the 3D genome. J Cell Biol 218:12–26. https://doi.org/10.1083/jcb.201809040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dekker J, Rippe K, Dekker M et al (2002) Capturing chromosome conformation. Science (New York, NY) 295:1306–1311. https://doi.org/10.1126/science.1067799

    Article  CAS  Google Scholar 

  3. Davies JOJ, Oudelaar AM, Higgs DR et al (2017) How best to identify chromosomal interactions: a comparison of approaches. Nat Methods 14:125–134. https://doi.org/10.1038/nmeth.4146

    Article  CAS  PubMed  Google Scholar 

  4. Nora EP, Lajoie BR, Schulz EG et al (2012) Spatial partitioning of the regulatory landscape of the X-inactivation Centre. Nature 485:381–385. https://doi.org/10.1038/nature11049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dixon JR, Selvaraj S, Yue F et al (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–380. https://doi.org/10.1038/nature11082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shen Y, Yue F, McCleary DF et al (2012) A map of the cis-regulatory sequences in the mouse genome. Nature 488:116–120. https://doi.org/10.1038/nature11243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Andrey G, Montavon T, Mascrez B et al (2013) A switch between topological domains underlies HoxD genes collinearity in mouse limbs. Science (New York, NY) 340:1234167. https://doi.org/10.1126/science.1234167

    Article  CAS  Google Scholar 

  8. Lupiáñez DG, Kraft K, Heinrich V et al (2015) Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161:1012–1025. https://doi.org/10.1016/j.cell.2015.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sanborn AL, Rao SSP, Huang S-C et al (2015) Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc Natl Acad Sci U S A 112:E6456–E6465. https://doi.org/10.1073/pnas.1518552112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fudenberg G, Imakaev M, Lu C et al (2016) Formation of chromosomal domains by loop extrusion. Cell Rep 15:2038–2049. https://doi.org/10.1016/j.celrep.2016.04.085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chang L-H, Ghosh S, Noordermeer D (2020) TADs and their Borders: free movement or building a wall? J Mol Biol 432:643–652. https://doi.org/10.1016/j.jmb.2019.11.025

    Article  CAS  PubMed  Google Scholar 

  12. Razin SV, Ulianov SV (2017) Gene functioning and storage within a folded genome. Cell Mol Biol Lett 22:18. https://doi.org/10.1186/s11658-017-0050-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rao SSP, Huntley MH, Durand NC et al (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:1665–1680. https://doi.org/10.1016/j.cell.2014.11.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lieberman-Aiden E, van Berkum NL, Williams L et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science (New York, NY) 326:289–293. https://doi.org/10.1126/science.1181369

    Article  CAS  Google Scholar 

  15. Noordermeer D, Leleu M, Splinter E et al (2011) The dynamic architecture of Hox gene clusters. Science (New York, NY) 334:222–225. https://doi.org/10.1126/science.1207194

    Article  CAS  Google Scholar 

  16. van de Werken HJG, Landan G, Holwerda SJB et al (2012) Robust 4C-seq data analysis to screen for regulatory DNA interactions. Nat Methods 9:969–972. https://doi.org/10.1038/nmeth.2173

    Article  CAS  PubMed  Google Scholar 

  17. Hughes JR, Roberts N, McGowan S et al (2014) Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment. Nat Genet 46:205–212. https://doi.org/10.1038/ng.2871

    Article  CAS  PubMed  Google Scholar 

  18. Davies JOJ, Telenius JM, McGowan SJ et al (2016) Multiplexed analysis of chromosome conformation at vastly improved sensitivity. Nat Methods 13:74–80. https://doi.org/10.1038/nmeth.3664

    Article  CAS  PubMed  Google Scholar 

  19. Splinter E, de Wit E, Nora EP et al (2011) The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes Dev 25:1371–1383. https://doi.org/10.1101/gad.633311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Llères D, Moindrot B, Pathak R et al (2019) CTCF modulates allele-specific sub-TAD organization and imprinted gene activity at the mouse Dlk1-Dio3 and Igf2-H19 domains. Genome Biol 20:272. https://doi.org/10.1186/s13059-019-1896-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Noordermeer D, Feil R (2020) Differential 3D chromatin organization and gene activity in genomic imprinting. Curr Opin Genet Dev 61:17–24. https://doi.org/10.1016/j.gde.2020.03.004

    Article  CAS  PubMed  Google Scholar 

  22. Holwerda SJB, van de Werken HJG, de Almeida CR et al (2013) Allelic exclusion of the immunoglobulin heavy chain locus is independent of its nuclear localization in mature B cells. Nucleic Acids Res 41:6905–6916. https://doi.org/10.1093/nar/gkt491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Johanson TM, Chan WF, Keenan CR et al (2019) Genome organization in immune cells: unique challenges. Nat Rev Immunol 19:448–456. https://doi.org/10.1038/s41577-019-0155-2

    Article  CAS  PubMed  Google Scholar 

  24. Clowney EJ, LeGros MA, Mosley CP et al (2012) Nuclear aggregation of olfactory receptor genes governs their monogenic expression. Cell 151:724–737. https://doi.org/10.1016/j.cell.2012.09.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Matelot M, Noordermeer D (2016) Determination of high-resolution 3D chromatin organization using circular chromosome conformation capture (4C-seq). Methods Mol Biol 1480:223–241. https://doi.org/10.1007/978-1-4939-6380-5_20

    Article  CAS  PubMed  Google Scholar 

  26. Nagano T, Várnai C, Schoenfelder S et al (2015) Comparison of hi-C results using in-solution versus in-nucleus ligation. Genome Biol 16:175. https://doi.org/10.1186/s13059-015-0753-7

    Article  PubMed  PubMed Central  Google Scholar 

  27. Thongjuea S, Stadhouders R, Grosveld FG et al (2013) r3Cseq: an R/Bioconductor package for the discovery of long-range genomic interactions from chromosome conformation capture and next-generation sequencing data. Nucleic Acids Res 41:e132. https://doi.org/10.1093/nar/gkt373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Klein FA, Pakozdi T, Anders S et al (2015) FourCSeq: analysis of 4C sequencing data. Bioinformatics (Oxford, England) 31:3085–3091. https://doi.org/10.1093/bioinformatics/btv335

    Article  CAS  Google Scholar 

  29. Walter C, Schuetzmann D, Rosenbauer F et al (2014) Basic4Cseq: an R/Bioconductor package for analyzing 4C-seq data. Bioinformatics (Oxford, England) 30:3268–3269. https://doi.org/10.1093/bioinformatics/btu497

    Article  CAS  Google Scholar 

  30. Williams RL, Starmer J, Mugford JW et al (2014) fourSig: a method for determining chromosomal interactions in 4C-Seq data. Nucleic Acids Res 42:e68. https://doi.org/10.1093/nar/gku156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cai M, Gao F, Lu W et al (2016) w4CSeq: software and web application to analyze 4C-seq data. Bioinformatics (Oxford, England) 32:3333–3335. https://doi.org/10.1093/bioinformatics/btw408

    Article  CAS  Google Scholar 

  32. Krijger PHL, Geeven G, Bianchi V et al (2020) 4C-seq from beginning to end: a detailed protocol for sample preparation and data analysis. Methods (San Diego, Calif) 170:17–32. https://doi.org/10.1016/j.ymeth.2019.07.014

    Article  CAS  Google Scholar 

  33. David FPA, Delafontaine J, Carat S et al (2014) HTSstation: a web application and open-access libraries for high-throughput sequencing data analysis. PLoS One 9:e85879. https://doi.org/10.1371/journal.pone.0085879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Keane TM, Goodstadt L, Danecek P et al (2011) Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477:289–294. https://doi.org/10.1038/nature10413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mugford JW, Starmer J, Williams RL et al (2014) Evidence for local regulatory control of escape from imprinted X chromosome inactivation. Genetics 197:715–723. https://doi.org/10.1534/genetics.114.162800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. de Wit E, Bouwman BAM, Zhu Y et al (2013) The pluripotent genome in three dimensions is shaped around pluripotency factors. Nature 501:227–231. https://doi.org/10.1038/nature12420

    Article  CAS  PubMed  Google Scholar 

  38. Dixon JR, Jung I, Selvaraj S et al (2015) Chromatin architecture reorganization during stem cell differentiation. Nature 518:331–336. https://doi.org/10.1038/nature14222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge funding from the Agence Nationale de la Recherche (project “IMP-REGULOME”—ANR-18-CE12-0022-02) to D. N.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daan Noordermeer or Benoit Moindrot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Miranda, M., Noordermeer, D., Moindrot, B. (2022). Detection of Allele-Specific 3D Chromatin Interactions Using High-Resolution In-Nucleus 4C-seq. In: Sexton, T. (eds) Spatial Genome Organization. Methods in Molecular Biology, vol 2532. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2497-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2497-5_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2496-8

  • Online ISBN: 978-1-0716-2497-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics