Skip to main content

Quantitative, Convenient, and Efficient Genome-Wide R-Loop Profiling by ssDRIP-Seq in Multiple Organisms

  • Protocol
  • First Online:
R-Loops

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2528))

Abstract

R-loop is a three-stranded chromatin structure, comprising one single-stranded DNA and another DNA:RNA hybrid strand, plays various and essential biological functions in many organisms. Developing a precise, efficient, faithful, and unbiased genome-wide R-loop detection method with extensive adaptability in all organisms is at the top priority for R-loop biology. Here, we provide a straightforward and highly efficient protocol for genome-wide strand-specific R-loop profiling in various organisms. In brief, genomic DNA is extracted and fragmented by the cocktail of restriction enzymes, and then the DNA:RNA hybrids are immunoprecipitated, following by the single-stranded DNA adaptor ligation and next-generation sequencing (named as ssDRIP-seq). Coupling with a straightforward and step-by-step bioinformatic pipeline, this method can provide high resolution and comprehensive strand-specific information for R-loop formation. ssDRIP-seq has been successfully applied for detecting R-loops from prokaryotes such as E. coli, to eukaryotes such as S. cerevisiae, mammalian cell culture and tissues, as well as plants Arabidopsis and rice, with high reproducibility and sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Santos-Pereira JM, Aguilera A (2015) R loops: new modulators of genome dynamics and function. Nat Rev Gen 16(10):583–597. https://doi.org/10.1038/nrg3961

    Article  CAS  Google Scholar 

  2. Richard P, Manley JL (2017) R loops and links to human disease. J Mol Biol 429(21):3168–3180. https://doi.org/10.1016/j.jmb.2016.08.031

    Article  CAS  PubMed  Google Scholar 

  3. Costantino L, Koshland D (2015) The Yin and Yang of R-loop biology. Curr Opin Cell Biol 34:39–45. https://doi.org/10.1016/j.ceb.2015.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xu W, Xu H, Li K, Fan Y, Liu Y, Yang X et al (2017) The R-loop is a common chromatin feature of the Arabidopsis genome. Nat Plants 3(9):704–714. https://doi.org/10.1038/s41477-017-0004-x

  5. Yuan W, Zhou J, Tong J, Zhuo W, Wang L, Li Y et al (2019) ALBA protein complex reads genic R-loops to maintain genome stability in Arabidopsis. Sci Adv 5(5):eaav9040. https://doi.org/10.1126/sciadv.aav9040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li Y, Song Y, Xu W, Li Q, Wang X, Li K et al (2020) R-loops coordinate with SOX2 in regulating reprogramming to pluripotency. Sci Adv 6(24):eaba0777. https://doi.org/10.1126/sciadv.aba0777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yan P, Liu Z, Song M, Wu Z, Xu W, Li K et al (2020) Genome-wide R-loop landscapes during cell differentiation and reprogramming. Cell Rep 32(1):107870. https://doi.org/10.1016/j.celrep.2020.107870

    Article  CAS  PubMed  Google Scholar 

  8. Xu W, Li K, Li S, Hou Q, Zhang Y, Liu K et al (2020) The R-loop atlas of Arabidopsis development and responses to environmental stimuli. Plant Cell 32(4):888–903. https://doi.org/10.1105/tpc.19.00802

  9. Yang X, Liu QL, Xu W, Zhang YC, Yang Y, Ju LF et al (2019) m(6)A promotes R-loop formation to facilitate transcription termination. Cell Res 29(12):1035–1038. https://doi.org/10.1038/s41422-019-0235-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gan H, Serra-Cardona A, Hua X, Zhou H, Labib K, Yu C et al (2018) The Mcm2-Ctf4-polalpha axis facilitates parental histone H3-H4 transfer to lagging strands. Mol Cell 72(1):140–51.e3. https://doi.org/10.1016/j.molcel.2018.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu C, Gan H, Serra-Cardona A, Zhang L, Gan S, Sharma S et al (2018) A mechanism for preventing asymmetric histone segregation onto replicating DNA strands. Science 361(6409):1386–1389. https://doi.org/10.1126/science.aat8849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ginno PA, Lott PL, Christensen HC, Korf I, Chedin F (2012) R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol Cell 45(6):814–825. https://doi.org/10.1016/j.molcel.2012.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sanz LA, Chedin F (2019) High-resolution, strand-specific R-loop mapping via S9.6-based DNA-RNA immunoprecipitation and high-throughput sequencing. Nat Protoc 14(6):1734–1755. https://doi.org/10.1038/s41596-019-0159-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wahba L, Costantino L, Tan FJ, Zimmer A, Koshland D (2016) S1-DRIP-seq identifies high expression and polyA tracts as major contributors to R-loop formation. Genes Dev 30(11):1327–1338. https://doi.org/10.1101/gad.280834.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dumelie JG, Jaffrey SR (2017) Defining the location of promoter associated R-loops at near-nucleotide resolution using bisDRIP-seq. eLife 6:39. https://doi.org/10.7554/eLife.28306

    Article  Google Scholar 

  16. Chen JY, Zhang X, Fu XD, Chen L (2019) R-ChIP for genome-wide mapping of R-loops by using catalytically inactive RNASEH1. Nat Protoc 14(5):1661–1685. https://doi.org/10.1038/s41596-019-0154-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang K, Wang H, Li C, Yin Z, Xiao R, Li Q et al (2021) Genomic profiling of native R loops with a DNA-RNA hybrid recognition sensor. Sci Adv 7(8):eabe3516. https://doi.org/10.1126/sciadv.abe3516

  18. Boguslawski SJ, Smith DE, Michalak MA, Mickelson KE, Yehle CO, Patterson WL et al (1986) Characterization of monoclonal-antibody to DNA.RNA and its application to immunodetection of hybrids. J Immunol Methods 89(1):123–130. https://doi.org/10.1016/0022-1759(86)90040-2

    Article  CAS  PubMed  Google Scholar 

  19. Konig F, Schubert T, Langst G (2017) The monoclonal S9.6 antibody exhibits highly variable binding affinities towards different R-loop sequences. PLoS One 12(6):e0178875. https://doi.org/10.1371/journal.pone.0178875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Phillips DD, Garboczi DN, Singh K, Hu Z, Leppla SH, Leysath CE (2013) The sub-nanomolar binding of DNA-RNA hybrids by the single-chain Fv fragment of antibody S9.6. J Mol Recognit 26(8):376–381. https://doi.org/10.1002/jmr.2284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25(16):2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6):841–842. https://doi.org/10.1093/bioinformatics/btq033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ramirez F, Dundar F, Diehl S, Gruning BA, Manke T (2014) deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res 42(Web Server issue):W187–W191. https://doi.org/10.1093/nar/gku365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Thorvaldsdottir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14(2):178–192. https://doi.org/10.1093/bib/bbs017

    Article  CAS  PubMed  Google Scholar 

  26. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE et al (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9(9):R137. https://doi.org/10.1186/gb-2008-9-9-r137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded by grants from the National Natural Science Foundation of China (grant nos. 91740105, 31822028, and 91940306 to Q. Sun and 32071437 and 31900302 to W. Xu) and the Ministry of Science and Technology of China (2016YFA0500800). W. Xu was supported by the postdoctoral fellowships from Tsinghua-Peking Joint Center for Life Sciences. The Sun Lab is supported by Tsinghua-Peking Joint Center for Life Sciences and the 1000 Young Talent Program of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianwen Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Xu, W., Li, K., Li, Q., Li, S., Zhou, J., Sun, Q. (2022). Quantitative, Convenient, and Efficient Genome-Wide R-Loop Profiling by ssDRIP-Seq in Multiple Organisms. In: Aguilera, A., Ruzov, A. (eds) R-Loops . Methods in Molecular Biology, vol 2528. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2477-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2477-7_29

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2476-0

  • Online ISBN: 978-1-0716-2477-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics