Skip to main content

The NanoBiT-Based Homogenous Ligand–Receptor Binding Assay

  • Protocol
  • First Online:
Bioluminescence

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2525))

Abstract

NanoLuc Binary Technology (NanoBiT) was recently developed by Promega, based on a large NanoLuc fragment (LgBiT) and two small complementation tags, the low-affinity SmBiT tag and the high-affinity HiBiT tag. In recent studies, we applied NanoBiT to ligand–binding assays of some G protein-coupled receptors via genetic fusion of a secretory LgBiT (sLgBiT) to the extracellular N-terminus of the receptors and covalent attachment of the low-affinity SmBiT tag to an appropriate position of their peptide ligands. The NanoBiT-based homogenous ligand–receptor binding assay is convenient for use and suitable for both the wild-type and mutant receptors, representing a novel tool for interaction mechanism studies of these receptors with their ligands. In the present chapter, we provide detailed protocols for setting up the NanoBiT-based homogenous binding assay using growth hormone secretagogue receptor type 1a (GHSR1a) and its endogenous agonist and antagonist as a representative model system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zambito G, Chawda C, Mezzanotte L (2021) Emerging tools for bioluminescence imaging. Curr Opin Chem Biol 63:86–94

    Article  CAS  Google Scholar 

  2. Syed AJ, Anderson JC (2021) Applications of bioluminescence in biotechnology and beyond. Chem Soc Rev 50:5668–5705

    Article  CAS  Google Scholar 

  3. Love AC, Prescher JA (2020) Seeing (and using) the light: recent developments in bioluminescence technology. Cell Chem Biol 27:904–920

    Article  CAS  Google Scholar 

  4. Yeh HW, Ai HW (2019) Development and applications of bioluminescent and chemiluminescent reporters and biosensors. Annu Rev Anal Chem (Palo Alto, Calif) 12:129–150

    Article  CAS  Google Scholar 

  5. Hall MP, Unch J, Binkowski BF, Valley MP, Butler BL, Wood MG, Otto P, Zimmerman K, Vidugiris G, Machleidt T, Robers MB, Benink HA, Eggers CT, Slater MR, Meisenheimer PL, Klaubert DH, Fan F, Encell LP, Wood KV (2012) Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem Biol 7:1848–1857

    Article  CAS  Google Scholar 

  6. Dixon AS, Schwinn MK, Hall MP, Zimmerman K, Otto P, Lubben TH, Butler BL, Binkowski BF, Machleidt T, Kirkland TA, Wood MG, Eggers CT, Encell LP, Wood KV (2016) NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells. ACS Chem Biol 11:400–408

    Article  CAS  Google Scholar 

  7. Bodle CR, Hayes MP, O'Brien JB, Roman DL (2017) Development of a bimolecular luminescence complementation assay for RGS: G protein interactions in cells. Anal Biochem 522:10–17

    Article  CAS  Google Scholar 

  8. Storme J, Cannaert A, Van Craenenbroeck K, Stove CP (2018) Molecular dissection of the human A3 adenosine receptor coupling with β-arrestin2. Biochem Pharmacol 148:298–307

    Article  CAS  Google Scholar 

  9. Schwinn MK, Hoang T, Yang X, Zhao X, Ma J, Li P, Wood KV, Mallender WD, Bembenek ME, Yan ZH (2018) Antibody-free detection of cellular neddylation dynamics of Cullin1. Anal Biochem 555:67–72

    Article  CAS  Google Scholar 

  10. Inoue A, Raimondi F, Kadji FMN, Singh G, Kishi T, Uwamizu A, Ono Y, Shinjo Y, Ishida S, Arang N, Kawakami K, Gutkind JS, Aoki J, Russell RB (2019) Illuminating G-protein-coupling selectivity of GPCRs. Cell 177:1933–1947

    Article  CAS  Google Scholar 

  11. Peach CJ, Kilpatrick LE, Woolard J, Hill SJ (2021) Use of NanoBiT and NanoBRET to monitor fluorescent VEGF-A binding kinetics to VEGFR2/NRP1 heteromeric complexes in living cells. Br J Pharmacol 178:2393–2411

    Article  CAS  Google Scholar 

  12. Schwinn MK, Machleidt T, Zimmerman K, Eggers CT, Dixon AS, Hurst R, Hall MP, Encell LP, Binkowski BF, Wood KV (2018) CRISPR-mediated tagging of endogenous proteins with a luminescent peptide. ACS Chem Biol 13:467–474

    Article  CAS  Google Scholar 

  13. Soave M, Kellam B, Woolard J, Briddon SJ, Hill SJ (2020) NanoBiT complementation to monitor agonist-induced adenosine A(1) receptor internalization. SLAS Discov 25:186–194

    Article  CAS  Google Scholar 

  14. Sasaki M, Anindita PD, Phongphaew W, Carr M, Kobayashi S, Orba Y, Sawa H (2018) Development of a rapid and quantitative method for the analysis of viral entry and release using a NanoLuc luciferase complementation assay. Virus Res 243:69–74

    Article  CAS  Google Scholar 

  15. Ranawakage DC, Takada T, Kamachi Y (2019) HiBiT-qIP, HiBiT-based quantitative immunoprecipitation, facilitates the determination of antibody affinity under immunoprecipitation conditions. Sci Rep 9:6895

    Article  Google Scholar 

  16. Boursier ME, Levin S, Zimmerman K, Machleidt T, Hurst R, Butler BL, Eggers CT, Kirkland TA, Wood KV, Friedman Ohana R (2020) The luminescent HiBiT peptide enables selective quantitation of G protein-coupled receptor ligand engagement and internalization in living cells. J Biol Chem 295:5124–5135

    Article  CAS  Google Scholar 

  17. Liang XY, Zhu QC, Liang JQ, Liu SY, Liu DX, Fung TS (2020) Development of HiBiT-tagged recombinant infectious bronchitis coronavirus for efficient in vitro and in vivo viral quantification. Front Microbiol 11:2100

    Article  Google Scholar 

  18. Jones IKA, Streblow DN (2021) Antibody-independent quantification of cytomegalovirus virion protein incorporation using HiBiT. Methods Mol Biol 2244:213–232

    Article  CAS  Google Scholar 

  19. Hu MJ, Shao XX, Li HZ, Nie WH, Wang JH, Liu YL, Xu ZG, Guo ZY (2018) Development of a novel ligand binding assay for relaxin family peptide receptor 3 and 4 using NanoLuc complementation. Amino Acids 50:1111–1119

    Article  CAS  Google Scholar 

  20. Wang JH, Li HZ, Shao XX, Nie WH, Liu YL, Xu ZG, Guo ZY (2019) Identifying the binding mechanism of LEAP2 to receptor GHSR1a. FEBS J 286:1332–1345

    Article  CAS  Google Scholar 

  21. Li HZ, Shou LL, Shao XX, Liu YL, Xu ZG, Guo ZY (2020) Identifying key residues and key interactions for the binding of LEAP2 to receptor GHSR1a. Biochem J 477:3199–3217

    Article  CAS  Google Scholar 

  22. Wang JH, Nie WH, Shao XX, Li HZ, Hu MJ, Liu YL, Xu ZG, Guo ZY (2019) Exploring electrostatic interactions of relaxin family peptide receptor 3 and 4 with ligands using a NanoBiT-based binding assay. Biochim Biophys Acta Biomembr 1861:776–786

    Article  CAS  Google Scholar 

  23. Li HZ, Li N, Shao XX, Liu YL, Xu ZG, Guo ZY (2020) Hydrophobic interactions of relaxin family peptide receptor 3 with ligands identified using a NanoBiT-based binding assay. Biochimie 177:117–126

    Article  CAS  Google Scholar 

  24. Li HZ, Shao XX, Shou LL, Li N, Liu YL, Xu ZG, Guo ZY (2021) Unusual orthologs shed new light on the binding mechanism of ghrelin to its receptor GHSR1a. Arch Biochem Biophys 704:108872

    Article  CAS  Google Scholar 

  25. Li HZ, Shou LL, Shao XX, Li N, Liu YL, Xu ZG, Guo ZY (2021) LEAP2 has antagonized the ghrelin receptor GHSR1a since its emergence in ancient fish. Amino Acids 53:939–949

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31971193; 31670773).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan-Yun Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liu, YL., Guo, ZY. (2022). The NanoBiT-Based Homogenous Ligand–Receptor Binding Assay. In: Kim, SB. (eds) Bioluminescence. Methods in Molecular Biology, vol 2525. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2473-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2473-9_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2472-2

  • Online ISBN: 978-1-0716-2473-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics