Skip to main content

TCR Gene Therapy for Cancer

  • Protocol
  • First Online:
Gene Therapy of Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2521))

Abstract

The protocol describes the procedure of antigen-specific T cell generation and TCR identification for the use in adoptive T cell therapy. We describe two paths of generating antigen-specific T cells, first, T cell stimulation with autologous dendritic cells pulsed with antigen peptide, second, in vivo T cell stimulation with peptide or DNA by gene gun application in a suitable mouse model followed by in vitro enrichment of peptide-reactive T cells. Peptide-stimulated T cells are sorted by fluorescence-activated cell sorting for CD107α or IFNγ expression and subsequently isolated RNA is used in a 5′ rapid amplification of cDNA ends (RACE )-PCR specific for TCR for TCR chain identification. After retroviral cloning, it is re-expressed on human T cells to test its applicability in adoptive T cell therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosenberg SA, Restifo NP (2015) Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348(6230):62–68

    Article  CAS  Google Scholar 

  2. Zacharakis N, Chinnasamy H, Black M et al (2018) Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat Med 24(6):724–730

    Article  CAS  Google Scholar 

  3. Tran E, Robbins PF, Lu Y-C et al (2016) T-cell transfer therapy targeting mutant KRAS in cancer. N Engl J Med 375(23):2255–2262

    Article  CAS  Google Scholar 

  4. Wu D, Liu Y, Li X et al (2020) Identification of clonal neoantigens derived from driver mutations in an EGFR-mutated lung cancer patient benefitting from anti-PD-1. Front Immunol 11:1366

    Article  CAS  Google Scholar 

  5. Robbins PF, Lu YC, El-Gamil M et al (2013) Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med 19(6):747–752

    Article  CAS  Google Scholar 

  6. Cohen CJ, Gartner JJ, Horovitz-Fried M et al (2015) Isolation of neoantigen-specific T cells from tumor and peripheral lymphocytes. J Clin Invest 125(10):3981–3991

    Article  Google Scholar 

  7. Dudley ME, Wunderlich JR, Shelton TE et al (2003) Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J Immunother 26(4):332–342

    Article  Google Scholar 

  8. Johnson LA, Heemskerk B, Powell DJ Jr et al (2006) Gene transfer of tumor-reactive TCR confers both high avidity and tumor reactivity to nonreactive peripheral blood mononuclear cells and tumor-infiltrating lymphocytes. J Immunol 177(9):6548–6559

    Article  CAS  Google Scholar 

  9. Hughes MS, Yu YY, Dudley ME et al (2005) Transfer of a TCR gene derived from a patient with a marked antitumor response conveys highly active T-cell effector functions. Hum Gene Ther 16(4):457–472

    Article  CAS  Google Scholar 

  10. Morgan RA, Dudley ME, Wunderlich JR et al (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314(5796):126–129

    Article  CAS  Google Scholar 

  11. Davari K, Holland T, Prassmayer L et al (2021) Development of a CD8 co-receptor independent T-cell receptor specific for tumor-associated antigen MAGE-A4 for next generation T-cell-based immunotherapy. J Immunother Cancer 9(3):e002035

    Article  Google Scholar 

  12. Wilde S, Geiger C, Milosevic S et al (2012) Generation of allo-restricted peptide-specific T cells using RNA-pulsed dendritic cells: a three phase experimental procedure. Onco Targets Ther 1(2):129–140

    CAS  Google Scholar 

  13. Çınar Ö, Brzezicha B, Grunert C et al (2021) High-affinity T-cell receptor specific for MyD88 L265P mutation for adoptive T-cell therapy of B-cell malignancies. J Immunother Cancer 9(7):e002410. https://doi.org/10.1136/jitc-2021-002410

    Article  PubMed  PubMed Central  Google Scholar 

  14. Grunert C, Willimsky G, Peuker CA et al (2022) Isolation of neoantigen-specific human T cell receptors from different human and murine repertoires. Cancers 14(7):1842. https://doi.org/10.3390/cancers14071842

  15. Lu YC, Zheng Z, Robbins PF et al (2018) An efficient single-cell RNA-Seq approach to identify neoantigen-specific T cell receptors. Mol Ther 26(2):379–389

    Article  CAS  Google Scholar 

  16. Karpanen T, Olweus J (2017) The potential of donor T-cell repertoires in Neoantigen-targeted cancer immunotherapy. Front Immunol 8:1718

    Article  Google Scholar 

  17. Yamamoto TN, Kishton RJ, Restifo NP (2019) Developing neoantigen-targeted T cell-based treatments for solid tumors. Nat Med 25(10):1488–1499

    Article  CAS  Google Scholar 

  18. Harada N, Fukaya S, Wada H et al (2017) Generation of a novel HLA class I transgenic mouse model carrying a knock-in mutation at the β2-microglobulin locus. J Immunol 198(1):516–527

    Article  CAS  Google Scholar 

  19. Vitiello A, Marchesini D, Furze J et al (1991) Analysis of the HLA-restricted influenza-specific cytotoxic T lymphocyte response in transgenic mice carrying a chimeric human-mouse class I major histocompatibility complex. J Exp Med 173(4):1007–1015

    Article  CAS  Google Scholar 

  20. Alexander J, Oseroff C, Sidney J, Sette A (2003) Derivation of HLA-B*0702 transgenic mice: functional CTL repertoire and recognition of human B*0702-restricted CTL epitopes. Hum Immunol 64(2):211–223

    Article  CAS  Google Scholar 

  21. Alexander J, Oseroff C, Sidney J et al (1997) Derivation of HLA-A11/Kb transgenic mice: functional CTL repertoire and recognition of human A11-restricted CTL epitopes. J Immunol 159(10):4753–4761

    CAS  PubMed  Google Scholar 

  22. Johnson LA, Morgan RA, Dudley ME et al (2009) Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114(3):535–546

    Article  CAS  Google Scholar 

  23. Li LP, Lampert JC, Chen X et al (2010) Transgenic mice with a diverse human T cell antigen receptor repertoire. Nat Med 16(9):1029–1034

    Article  CAS  Google Scholar 

  24. Gavvovidis I, Leisegang M, Willimsky G et al (2018) Targeting Merkel cell carcinoma by engineered T cells specific to T-antigens of Merkel cell polyomavirus. Clin Cancer Res 24(15):3644–3655

    Article  CAS  Google Scholar 

  25. Çakmak-Görür N, Radke J, Rhein S et al (2019) Intracellular expression of FLT3 in Purkinje cells: implications for adoptive T-cell therapies. Leukemia 33(4):1039–1043

    Article  Google Scholar 

  26. Obenaus M, Leitão C, Leisegang M et al (2015) Identification of human T-cell receptors with optimal affinity to cancer antigens using antigen-negative humanized mice. Nat Biotechnol 33(4):402–407

    Article  CAS  Google Scholar 

  27. Poncette L, Chen X, Lorenz FK, Blankenstein T (2019) Effective NY-ESO-1-specific MHC II-restricted T cell receptors from antigen-negative hosts enhance tumor regression. J Clin Invest 129(1):324–335

    Article  Google Scholar 

  28. Yossef R, Tran E, Deniger DC et al (2018) Enhanced detection of neoantigen-reactive T cells targeting unique and shared oncogenes for personalized cancer immunotherapy. JCI Insight 3(19):e122467

    Article  Google Scholar 

  29. Parkhurst M, Gros A, Pasetto A et al (2017) Isolation of T-cell receptors specifically reactive with mutated tumor-associated antigens from tumor-infiltrating lymphocytes based on CD137 expression. Clin Cancer Res 23(10):2491–2505

    Article  CAS  Google Scholar 

  30. Jahn L, van der Steen DM, Hagedoorn RS et al (2016) Generation of CD20-specific TCRs for TCR gene therapy of CD20low B-cell malignancies insusceptible to CD20-targeting antibodies. Oncotarget 7(47):77021–77037

    Article  Google Scholar 

  31. Gros A, Parkhurst MR, Tran E et al (2016) Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat Med 22(4):433–438

    Article  CAS  Google Scholar 

  32. Jahn L, Hombrink P, Hagedoorn RS et al (2017) TCR-based therapy for multiple myeloma and other B-cell malignancies targeting intracellular transcription factor BOB1. Blood 129(10):1284–1295

    Article  CAS  Google Scholar 

  33. Deniger DC, Pasetto A, Tran E et al (2016) Stable, nonviral expression of mutated tumor neoantigen-specific T-cell receptors using the sleeping beauty transposon/transposase system. Mol Ther 24(6):1078–1089

    Article  CAS  Google Scholar 

  34. Singh N, Shi J, June CH, Ruella M (2017) Genome-editing technologies in adoptive T cell immunotherapy for cancer. Curr Hematol Malig Rep 12(6):522–529

    Article  Google Scholar 

  35. Schober K, Müller TR, Busch DH (2020) Orthotopic T-cell receptor replacement-an "enabler" for TCR-based therapies. Cell 9(6):1367

    Article  CAS  Google Scholar 

  36. Olweus J (2017) Manufacture of CAR-T cells in the body. Nat Biotechnol 35(6):520–521

    Article  CAS  Google Scholar 

  37. Wölfl M, Greenberg PD (2014) Antigen-specific activation and cytokine-facilitated expansion of naive, human CD8+ T cells. Nat Protoc 9(4):950–966

    Article  Google Scholar 

  38. Nguyen-Hoai T, Pezzutto A, Westermann J (2015) Gene gun Her2/neu DNA vaccination: evaluation of vaccine efficacy in a syngeneic Her2/neu mouse tumor model. Methods Mol Biol 1317:17–37

    Article  Google Scholar 

  39. Leisegang M, Engels B, Meyerhuber P et al (2008) Enhanced functionality of T cell receptor-redirected T cells is defined by the transgene cassette. J Mol Med 86(5):573–583

    Article  CAS  Google Scholar 

  40. Sommermeyer D, Uckert W (2010) Minimal amino acid exchange in human TCR constant regions fosters improved function of TCR gene-modified T cells. J Immunol 184(11):6223–6231

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Rhein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rhein, S., Çakmak-Görür, N. (2022). TCR Gene Therapy for Cancer. In: Walther, W. (eds) Gene Therapy of Cancer. Methods in Molecular Biology, vol 2521. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2441-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2441-8_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2440-1

  • Online ISBN: 978-1-0716-2441-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics