Skip to main content

In Vitro Models to Study Angiogenesis and Vasculature

  • Protocol
  • First Online:
Vasculogenic Mimicry

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2514))

Abstract

The development of vasculature in vivo is an extremely complex process that requires temporal and spatial coordination between multiple cell types to produce an effective vessel. The formation of vasculature from preexisting blood vessels, known as angiogenesis, plays important roles in several physiological and pathological processes, including wound healing, organ development and growth, ischemia, inflammatory disorders, fibrosis, and cancer. Means to deconstruct these complicated biological systems are necessary to gain mechanistic insight into their development, function, and modulation that can be tested in in vivo models and ultimately the clinic. In this chapter, we will first review the classical in vitro techniques to study angiogenesis. Next, we will explore the exciting recent advances that rely on 3D multicellular systems to more accurately mimic vasculature development in vitro. Finally, we will discuss the applications of in vitro angiogenic methods to study related vasculature phenomena, such as vasculogenic mimicry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146(6):873–887. https://doi.org/10.1016/j.cell.2011.08.039

    Article  PubMed  CAS  Google Scholar 

  2. Chung AS, Ferrara N (2011) Developmental and pathological angiogenesis. Annu Rev Cell Dev Biol 27:563–584. https://doi.org/10.1146/annurev-cellbio-092910-154002

    Article  PubMed  CAS  Google Scholar 

  3. Potente M, Makinen T (2017) Vascular heterogeneity and specialization in development and disease. Nat Rev Mol Cell Biol 18(8):477–494. https://doi.org/10.1038/nrm.2017.36

    Article  PubMed  CAS  Google Scholar 

  4. Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21(2):193–215. https://doi.org/10.1016/j.devcel.2011.07.001

    Article  PubMed  CAS  Google Scholar 

  5. Nowak-Sliwinska P, Alitalo K, Allen E, Anisimov A, Aplin AC, Auerbach R, Augustin HG, Bates DO, van Beijnum JR, Bender RHF, Bergers G, Bikfalvi A, Bischoff J, Bock BC, Brooks PC, Bussolino F, Cakir B, Carmeliet P, Castranova D, Cimpean AM, Cleaver O, Coukos G, Davis GE, De Palma M, Dimberg A, Dings RPM, Djonov V, Dudley AC, Dufton NP, Fendt SM, Ferrara N, Fruttiger M, Fukumura D, Ghesquiere B, Gong Y, Griffin RJ, Harris AL, Hughes CCW, Hultgren NW, Iruela-Arispe ML, Irving M, Jain RK, Kalluri R, Kalucka J, Kerbel RS, Kitajewski J, Klaassen I, Kleinmann HK, Koolwijk P, Kuczynski E, Kwak BR, Marien K, Melero-Martin JM, Munn LL, Nicosia RF, Noel A, Nurro J, Olsson AK, Petrova TV, Pietras K, Pili R, Pollard JW, Post MJ, Quax PHA, Rabinovich GA, Raica M, Randi AM, Ribatti D, Ruegg C, Schlingemann RO, Schulte-Merker S, Smith LEH, Song JW, Stacker SA, Stalin J, Stratman AN, Van de Velde M, van Hinsbergh VWM, Vermeulen PB, Waltenberger J, Weinstein BM, Xin H, Yetkin-Arik B, Yla-Herttuala S, Yoder MC, Griffioen AW (2018) Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 21(3):425–532. https://doi.org/10.1007/s10456-018-9613-x

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cochrane A, Albers HJ, Passier R, Mummery CL, van den Berg A, Orlova VV, van der Meer AD (2019) Advanced in vitro models of vascular biology: human induced pluripotent stem cells and organ-on-chip technology. Adv Drug Deliv Rev 140:68–77. https://doi.org/10.1016/j.addr.2018.06.007

    Article  PubMed  CAS  Google Scholar 

  7. Sasmal P, Datta P, Wu Y, Ozbolat IT (2018) 3D bioprinting for modelling vasculature. Microphysiol Syst 2. https://doi.org/10.21037/mps.2018.10.02

  8. van Duinen V, Stam W, Borgdorff V, Reijerkerk A, Orlova V, Vulto P, Hankemeier T, van Zonneveld AJ (2019) Standardized and scalable assay to study perfused 3D angiogenic sprouting of iPSC-derived endothelial cells in vitro. J Vis Exp 153. https://doi.org/10.3791/59678

  9. van Duinen V, Trietsch SJ, Joore J, Vulto P, Hankemeier T (2015) Microfluidic 3D cell culture: from tools to tissue models. Curr Opin Biotechnol 35:118–126. https://doi.org/10.1016/j.copbio.2015.05.002

    Article  PubMed  CAS  Google Scholar 

  10. Kim S, Kim W, Lim S, Jeon JS (2017) Vasculature-on-A-chip for in vitro disease models. Bioengineering (Basel) 4(1). https://doi.org/10.3390/bioengineering4010008

  11. Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe'er J, Trent JM, Meltzer PS, Hendrix MJ (1999) Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 155(3):739–752. https://doi.org/10.1016/S0002-9440(10)65173-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Seftor RE, Hess AR, Seftor EA, Kirschmann DA, Hardy KM, Margaryan NV, Hendrix MJ (2012) Tumor cell vasculogenic mimicry: from controversy to therapeutic promise. Am J Pathol 181(4):1115–1125. https://doi.org/10.1016/j.ajpath.2012.07.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Quintero-Fabian S, Arreola R, Becerril-Villanueva E, Torres-Romero JC, Arana-Argaez V, Lara-Riegos J, Ramirez-Camacho MA, Alvarez-Sanchez ME (2019) Role of matrix metalloproteinases in angiogenesis and cancer. Front Oncol 9:1370. https://doi.org/10.3389/fonc.2019.01370

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ren Z, Chen J, Khalil RA (2017) Zymography as a research tool in the study of matrix metalloproteinase inhibitors. Methods Mol Biol 1626:79–102. https://doi.org/10.1007/978-1-4939-7111-4_8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Tajhya RB, Patel RS, Beeton C (2017) Detection of matrix metalloproteinases by zymography. Methods Mol Biol 1579:231–244. https://doi.org/10.1007/978-1-4939-6863-3_12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Irvin MW, Zijlstra A, Wikswo JP, Pozzi A (2014) Techniques and assays for the study of angiogenesis. Exp Biol Med (Maywood) 239(11):1476–1488. https://doi.org/10.1177/1535370214529386

    Article  CAS  Google Scholar 

  17. Stryker ZI, Rajabi M, Davis PJ, Mousa SA (2019) Evaluation of angiogenesis assays. Biomedicine 7(2):10.3390/biomedicines7020037

    Google Scholar 

  18. Hughes WL, Bond VP, Brecher G, Cronkite EP, Painter RB, Quastler H, Sherman FG (1958) Cellular proliferation in the mouse as revealed by autoradiography with tritiated thymidine. Proc Natl Acad Sci U S A 44(5):476–483. https://doi.org/10.1073/pnas.44.5.476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Mead TJ, Lefebvre V (2014) Proliferation assays (BrdU and EdU) on skeletal tissue sections. Methods Mol Biol 1130:233–243. https://doi.org/10.1007/978-1-62703-989-5_17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Chehrehasa F, Meedeniya AC, Dwyer P, Abrahamsen G, Mackay-Sim A (2009) EdU, a new thymidine analogue for labelling proliferating cells in the nervous system. J Neurosci Methods 177(1):122–130. https://doi.org/10.1016/j.jneumeth.2008.10.006

    Article  PubMed  CAS  Google Scholar 

  21. Lamalice L, Le Boeuf F, Huot J (2007) Endothelial cell migration during angiogenesis. Circ Res 100(6):782–794. https://doi.org/10.1161/01.RES.0000259593.07661.1e

    Article  PubMed  CAS  Google Scholar 

  22. Goodwin AM (2007) In vitro assays of angiogenesis for assessment of angiogenic and anti-angiogenic agents. Microvasc Res 74(2–3):172–183. https://doi.org/10.1016/j.mvr.2007.05.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Szymborska A, Gerhardt H (2018) Hold me, but not too tight-endothelial cell-cell junctions in angiogenesis. Cold Spring Harb Perspect Biol 10(8). https://doi.org/10.1101/cshperspect.a029223

  24. Avraamides CJ, Garmy-Susini B, Varner JA (2008) Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer 8(8):604–617. https://doi.org/10.1038/nrc2353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Cavallaro U, Liebner S, Dejana E (2006) Endothelial cadherins and tumor angiogenesis. Exp Cell Res 312(5):659–667. https://doi.org/10.1016/j.yexcr.2005.09.019

    Article  PubMed  CAS  Google Scholar 

  26. Sweeney M, Foldes G (2018) It takes two: endothelial-perivascular cell cross-talk in vascular development and disease. Front Cardiovasc Med 5:154. https://doi.org/10.3389/fcvm.2018.00154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Gavard J (2014) Endothelial permeability and VE-cadherin: a wacky comradeship. Cell Adhes Migr 8(2):158–164. https://doi.org/10.4161/cam.29026

    Article  Google Scholar 

  28. Dejana E, Orsenigo F, Lampugnani MG (2008) The role of adherens junctions and VE-cadherin in the control of vascular permeability. J Cell Sci 121(Pt 13):2115–2122. https://doi.org/10.1242/jcs.017897

    Article  PubMed  CAS  Google Scholar 

  29. Tahergorabi Z, Khazaei M (2012) A review on angiogenesis and its assays. Iran J Basic Med Sci 15(6):1110–1126

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Kleinman HK, Martin GR (2005) Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 15(5):378–386. https://doi.org/10.1016/j.semcancer.2005.05.004

    Article  PubMed  CAS  Google Scholar 

  31. Morin KT, Tranquillo RT (2013) In vitro models of angiogenesis and vasculogenesis in fibrin gel. Exp Cell Res 319(16):2409–2417. https://doi.org/10.1016/j.yexcr.2013.06.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Koh W, Stratman AN, Sacharidou A, Davis GE (2008) In vitro three dimensional collagen matrix models of endothelial lumen formation during vasculogenesis and angiogenesis. Methods Enzymol 443:83–101. https://doi.org/10.1016/S0076-6879(08)02005-3

    Article  PubMed  CAS  Google Scholar 

  33. Gudapati H, Dey M, Ozbolat I (2016) A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials 102:20–42. https://doi.org/10.1016/j.biomaterials.2016.06.012

    Article  PubMed  CAS  Google Scholar 

  34. Shiu YT, Weiss JA, Hoying JB, Iwamoto MN, Joung IS, Quam CT (2005) The role of mechanical stresses in angiogenesis. Crit Rev Biomed Eng 33(5):431–510. https://doi.org/10.1615/critrevbiomedeng.v33.i5.10

    Article  PubMed  Google Scholar 

  35. Gupta PB, Pastushenko I, Skibinski A, Blanpain C, Kuperwasser C (2019) Phenotypic plasticity: driver of cancer initiation, progression, and therapy resistance. Cell Stem Cell 24(1):65–78. https://doi.org/10.1016/j.stem.2018.11.011

    Article  PubMed  CAS  Google Scholar 

  36. El Hallani S, Boisselier B, Peglion F, Rousseau A, Colin C, Idbaih A, Marie Y, Mokhtari K, Thomas JL, Eichmann A, Delattre JY, Maniotis AJ, Sanson M (2010) A new alternative mechanism in glioblastoma vascularization: tubular vasculogenic mimicry. Brain 133(Pt 4):973–982. https://doi.org/10.1093/brain/awq044

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T, Maira G, Parati EA, Stassi G, Larocca LM, De Maria R (2010) Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468(7325):824–828. https://doi.org/10.1038/nature09557

    Article  PubMed  CAS  Google Scholar 

  38. Scully S, Francescone R, Faibish M, Bentley B, Taylor SL, Oh D, Schapiro R, Moral L, Yan W, Shao R (2012) Transdifferentiation of glioblastoma stem-like cells into mural cells drives vasculogenic mimicry in glioblastomas. J Neurosci 32(37):12950–12960. https://doi.org/10.1523/JNEUROSCI.2017-12.2012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Francescone R, Ngernyuang N, Yan W, Bentley B, Shao R (2014) Tumor-derived mural-like cells coordinate with endothelial cells: role of YKL-40 in mural cell-mediated angiogenesis. Oncogene 33(16):2110–2122. https://doi.org/10.1038/onc.2013.160

    Article  PubMed  CAS  Google Scholar 

  40. Martin JD, Seano G, Jain RK (2019) Normalizing function of tumor vessels: Progress, opportunities, and challenges. Annu Rev Physiol 81:505–534. https://doi.org/10.1146/annurev-physiol-020518-114700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Francescone RA 3rd, Faibish M, Shao R (2011) A Matrigel-based tube formation assay to assess the vasculogenic activity of tumor cells. J Vis Exp 55:doi:10.3791/3040

    Google Scholar 

  42. Racordon D, Valdivia A, Mingo G, Erices R, Aravena R, Santoro F, Bravo ML, Ramirez C, Gonzalez P, Sandoval A, Gonzalez A, Retamal C, Kogan MJ, Kato S, Cuello MA, Osorio G, Nualart F, Alvares P, Gago-Arias A, Fabri D, Espinoza I, Sanchez B, Corvalan AH, Pinto MP, Owen GI (2017) Structural and functional identification of vasculogenic mimicry in vitro. Sci Rep 7(1):6985. https://doi.org/10.1038/s41598-017-07622-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Francescone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Francescone, R., Vendramini-Costa, D.B. (2022). In Vitro Models to Study Angiogenesis and Vasculature. In: Marques dos Reis, E., Berti, F. (eds) Vasculogenic Mimicry. Methods in Molecular Biology, vol 2514. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2403-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2403-6_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2402-9

  • Online ISBN: 978-1-0716-2403-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics