Skip to main content

Functions of Glycosylation and Related Web Resources for Its Prediction

  • Protocol
  • First Online:
Computational Methods for Predicting Post-Translational Modification Sites

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2499))

  • 880 Accesses

Abstract

Glycosylation involves the attachment of carbohydrate sugar chains, or glycans, onto an amino acid residue of a protein. These glycans are often branched structures and serve to modulate the function of proteins. Glycans are synthesized through a complex process of enzymatic reactions that occur in the Golgi apparatus in mammalian systems. Because there is currently no sequencer for glycans, technologies such as mass spectrometry is used to characterize glycans in a biological sample to ascertain its glycome. This is a tedious process that requires high levels of expertise and equipment. Thus, the enzymes that work on glycans, called glycogenes or glycoenzymes, have been studied to better understand glycan function. With the development of glycan-related databases and a glycan repository, bioinformatics approaches have attempted to predict the glycosylation pathway and the glycosylation sites on proteins. This chapter introduces these methods and related Web resources for understanding glycan function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumozaki S, Sato K, Sakakibara Y (2015) A machine learning based approach to de novo sequencing of glycans from tandem mass spectrometry spectrum. Comput Biol Bioinformatics 12:1267–1274

    CAS  Google Scholar 

  2. Apte A, Meitei NS (2010) Bioinformatics in glycomics: glycan characterization with mass spectrometric data using SimGlycan. Methods Mol Biol 600:269–281

    Article  CAS  PubMed  Google Scholar 

  3. Wei J, Tang Y, Bai Y et al (2020) Toward automatic and comprehensive glycan characterization by online PGC-LC-EED MS/MS. Anal Chem 92:782–791

    Article  CAS  PubMed  Google Scholar 

  4. Hong P, Sun H, Sha L et al (2017) GlycoDeNovo—an efficient algorithm for accurate de novo glycan topology reconstruction from tandem mass spectra. J Am Soc Mass Spectrom 28:2288–2301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Krambeck FJ, Bennun SV, Narang S et al (2009) A mathematical model to derive N-glycan structures and cellular enzyme activities from mass spectrometric data. Glycobiology 19:1163–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Umaña P, Bailey JE (1997) A mathematical model of N-linked glycoform biosynthesis. Biotechnol Bioeng 55:890–908

    Article  PubMed  Google Scholar 

  7. Liu G, Neelamegham S (2014) A computational framework for the automated construction of glycosylation reaction networks. PLoS One 9:e100939

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Aoki-Kinoshita KF (2015) Analyzing glycan structure synthesis with the glycan pathway predictor (GPP) tool. Methods Mol Biol 1273:139–147

    Article  CAS  PubMed  Google Scholar 

  9. Varki A, Cummings RD, Esko JD et al (2017) Essentials of glycobiology. Cold Spring Harbor Laboratory Press

    Google Scholar 

  10. Azevedo R, Silva AMN, Reis CA et al (2018) In silico approaches for unveiling novel glycobiomarkers in cancer. J Proteomics 171:95–106

    Article  CAS  PubMed  Google Scholar 

  11. Hiruma T, Togayachi A, Okamura K et al (2004) A novel human β1,3-N-acetylgalactosaminyltransferase that synthesizes a unique carbohydrate structure, GalNAcβ1-3GlcNAc. J Biol Chem 279:14087–14095

    Article  CAS  PubMed  Google Scholar 

  12. Hirabayashi J, Tateno H, Shikanai T et al (2015) The lectin frontier database (LfDB), and data generation based on frontal affinity chromatography. Molecules 20:951–973

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Fujita A, Aoki NP, Shinmachi D et al (2021) The international glycan repository GlyTouCan version 3.0. Nucleic Acids Res 49:D1529–D1533

    Article  CAS  PubMed  Google Scholar 

  14. Aoki-Kinoshita KF, Bolleman J, Campbell MP et al (2013) Introducing glycomics data into the semantic web. J Biomed Semantics 4:39

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yamada I, Shiota M, Shinmachi D et al (2020) The GlyCosmos portal: a unified and comprehensive web resource for the glycosciences. Nat Methods 17:649–650

    Article  CAS  PubMed  Google Scholar 

  16. Alocci D, Mariethoz J, Gastaldello A et al (2019) GlyConnect: glycoproteomics goes visual, interactive, and analytical. J Proteome Res 18:664–677

    Article  CAS  PubMed  Google Scholar 

  17. York WS, Mazumder R, Ranzinger R et al (2020) GlyGen: computational and informatics resources for glycoscience. Glycobiology 30:72–73

    Article  CAS  PubMed  Google Scholar 

  18. Kaji H, Shikanai T, Suzuki Y et al (2017) GlycoProtDB: a database of glycoproteins mapped with actual glycosylation sites identified by mass spectrometry. In: A practical guide to using glycomics databases. Springer, Tokyo, pp 215–224

    Chapter  Google Scholar 

  19. Kaji H, Shikanai T, Sasaki-Sawa A et al (2012) Large-scale identification of N-glycosylated proteins of mouse tissues and construction of a glycoprotein database, GlycoProtDB. J Proteome Res 11:4553–4566

    Article  CAS  PubMed  Google Scholar 

  20. Zou X, Yoshida M, Nagai-Okatani C et al (2017) A standardized method for lectin microarray-based tissue glycome mapping. Sci Rep 7:43560

    Article  PubMed  PubMed Central  Google Scholar 

  21. Aoki-Kinoshita KF, Lisacek F, Mazumder R et al (2020) The GlySpace alliance: toward a collaborative global glycoinformatics community. Glycobiology 30(2):70–71

    Article  CAS  PubMed  Google Scholar 

  22. Lombard V, Golaconda Ramulu H, Drula E et al (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495

    Article  CAS  PubMed  Google Scholar 

  23. Terrapon N, Lombard V, Drula E et al (2017) The CAZy database/the carbohydrate-active enzyme (CAZy) database: principles and usage guidelines. In: A practical guide to using glycomics databases. Springer, Tokyo, pp 117–131

    Chapter  Google Scholar 

  24. Krambeck FJ, Betenbaugh MJ (2005) A mathematical model of {N}-linked glycosylation. Biotechnol Bioeng 92:711–728

    Article  CAS  PubMed  Google Scholar 

  25. Banin E, Neuberger Y, Altshuler Y et al (2002) A novel Linear Code(R) nomenclature for complex carbohydrates. Trends Glycosci Glycotechnol 14:127–137

    Article  CAS  Google Scholar 

  26. Akune Y, Hosoda M, Kaiya S et al (2010) The RINGS resource for glycome informatics analysis and data mining on the Web. OMICS 14:475–486

    Article  CAS  PubMed  Google Scholar 

  27. Akune Y, Lin C-H, Abrahams JL et al (2016) Comprehensive analysis of the N-glycan biosynthetic pathway using bioinformatics to generate UniCorn: atheoretical N-glycan structure database. Carbohydr Res 431:56–63

    Article  CAS  PubMed  Google Scholar 

  28. McNaught AD (1996) Nomenclature of carbohydrates (IUPAC Recommendations 1996). Pure Appl Chem 68:1919–2008

    Article  CAS  Google Scholar 

  29. Kellman BP, Zhang Y, Logomasini E et al (2020) A consensus-based and readable extension of Linear Code for Reaction Rules (LiCoRR). Beilstein J Org Chem 16:2645–2662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bause E, Legler G (1981) The role of the hydroxy amino acid in the triplet sequence Asn-Xaa-Thr(Ser) for the N-glycosylation step during glycoprotein biosynthesis. Biochem J 195:639–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bause E (1983) Structural requirements of N-glycosylation of proteins. Studies with proline peptides as conformational probes. Biochem J 209:331–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Apweiler R, Hermjakob H, Sharon N (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1473:4–8

    Article  CAS  PubMed  Google Scholar 

  33. Feng Z, Westbrook JD, Sala R et al (2021) Enhanced validation of small-molecule ligands and carbohydrates in the Protein Data Bank. Structure 29:393–400.e1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Werz DB, Ranzinger R, Herget S et al (2007) Exploring the structural diversity of mammalian carbohydrates (“glycospace”) by statistical databank analysis. ACS Chem Biol 2:685–691

    Article  CAS  PubMed  Google Scholar 

  35. Lutteke T, Bohne-Lang A, Loss A et al (2005) {GLYCOSCIENCES.de}: an {I}nternet portal to support glycomics and glycobiology research. Glycobiology 16:71R–81R

    Article  PubMed  CAS  Google Scholar 

  36. Caragea C, Sinapov J, Silvescu A et al (2007) Glycosylation site prediction using ensembles of support vector machine classifiers. BMC Bioinformatics 8:438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Chauhan JS, Rao A, Raghava GPS (2013) In silico platform for prediction of N-, O- and C-glycosites in eukaryotic protein sequences. PLoS One 8:e67008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hamby SE, Hirst JD (2008) Prediction of glycosylation sites using random forests. BMC Bioinformatics 9:500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Li F, Li C, Wang M et al (2015) GlycoMine: a machine learning-based approach for predicting N-, C- and O-linked glycosylation in the human proteome. Bioinformatics 31:1411–1419

    Article  PubMed  CAS  Google Scholar 

  40. Chuang G-Y, Boyington JC, Joyce MG et al (2012) Computational prediction of N-linked glycosylation incorporating structural properties and patterns. Bioinformatics 28:2249–2255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Taherzadeh G, Dehzangi A, Golchin M et al (2019) SPRINT-Gly: predicting N- and O-linked glycosylation sites of human and mouse proteins by using sequence and predicted structural properties. Bioinformatics 35:4140–4146

    Article  CAS  PubMed  Google Scholar 

  42. Li F, Li C, Revote J et al (2016) GlycoMinestruct: a new bioinformatics tool for highly accurate mapping of the human N-linked and O-linked glycoproteomes by incorporating structural features. Sci Rep 6:34595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gupta R, Brunak S (2002) Prediction of glycosylation across the human proteome and the correlation to protein function. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, pp 310–322

    Google Scholar 

  44. Steentoft C, Vakhrushev SY, Joshi HJ et al (2013) Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J 32:1478–1488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Julenius K (2007) NetCGlyc 1.0: prediction of mammalian C-mannosylation sites. Glycobiology 17:868–876

    Article  CAS  PubMed  Google Scholar 

  46. Kellman BP, Lewis NE (2020) Big-data glycomics: tools to connect glycan biosynthesis to extracellular communication. Trends Biochem Sci 46(4):284–300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Spahn PN, Hansen AH, Hansen HG et al (2016) A Markov chain model for N-linked protein glycosylation—towards a low-parameter tool for model-driven glycoengineering. Metab Eng 33:52–66

    Article  CAS  PubMed  Google Scholar 

  48. Kikuchi N, Narimatsu H (2003) Comparison of glycosyltransferase families using the profile hidden {M}arkov model. Biochem Biophys Res Comm 310:574–579

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoko F. Aoki-Kinoshita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Aoki-Kinoshita, K.F. (2022). Functions of Glycosylation and Related Web Resources for Its Prediction. In: KC, D.B. (eds) Computational Methods for Predicting Post-Translational Modification Sites. Methods in Molecular Biology, vol 2499. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2317-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2317-6_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2316-9

  • Online ISBN: 978-1-0716-2317-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics