Skip to main content

A Text Mining Protocol for Predicting Drug–Drug Interaction and Adverse Drug Reactions from PubMed Articles

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2496))

Abstract

Drug–drug interactions (DDIs) and adverse drug reactions (ADRs) occur during the pharmacotherapy of multiple comorbidities and in susceptible individuals. DDIs and ADRs limit the therapeutic outcomes in pharmacotherapy. DDIs and ADRs have significant impact on patients’ life and health care cost. Hence, knowledge of DDI and ADRs is required for providing better clinical outcomes to patients. Various approaches are developed by the scientific community to document and report the occurrences of DDIs and ADRs through scientific publications. Due to the enormously increasing number of publications and the requirement of updated information on DDIs and ADRs, manual retrieval of data is time consuming and laborious. Various automated techniques are developed to get information on DDIs and ADRs. One such technique is text mining of DDIs and ADRs from published biomedical literature in PubMed. Here, we present a recently developed text mining protocol for predicting DDIs and ADRs from PubMed abstracts.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Manzi SF, Shannon M (2005) Drug interactions—a review. Clin Pediatr Emerg Med 6:93–102. Available from: http://www.sciencedirect.com/science/article/pii/S152284010500056X

    Article  Google Scholar 

  2. Goodman GA (2018) In: Brunton LL, Hilal-Dandan R, Knollmann BC (eds) Goodman & Gillman’s the pharmacological basis of therapeutics. McGraw-Hill Education, New York, USA

    Google Scholar 

  3. Klotz U (2009) Pharmacokinetics and drug metabolism in the elderly. Drug Metab Rev 41:67–76. Available from: http://www.tandfonline.com/doi/full/10.1080/03602530902722679

    Article  CAS  Google Scholar 

  4. Ben Abacha A, Chowdhury MFM, Karanasiou A, Mrabet Y, Lavelli A, Zweigenbaum P (2015) Text mining for pharmacovigilance: using machine learning for drug name recognition and drug–drug interaction extraction and classification. J Biomed Inform 58:122–132. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1532046415002099

    Article  Google Scholar 

  5. Wu H-Y, Chiang C-W, Li L (2014) Text mining for drug–drug interaction. In: Kumar V, Tipney H (eds) Biomed lit mining methods Mol biol (methods Protoc Vol 1159). Humana press, New York, USA, pp 47–75. Available from: http://link.springer.com/10.1007/978-1-4939-0709-0_4

    Google Scholar 

  6. Wu H-Y, Karnik S, Subhadarshini A, Wang Z, Philips S, Han X et al (2013) An integrated pharmacokinetics ontology and corpus for text mining. BMC BBioinformatics 14:35. Available from: https://doi.org/10.1186/1471-2105-14-35

    Article  CAS  Google Scholar 

  7. Zhang Y, Wu HY, Xu J, Wang J, Soysal E, Li L et al (2016) Leveraging syntactic and semantic graph kernels to extract pharmacokinetic drug drug interactions from biomedical literature. BMC Syst Biol 10:67. Available from: http://bmcsystbiol.biomedcentral.com/articles/10.1186/s12918-016-0311-2

    Article  Google Scholar 

  8. Lim S, Lee K, Kang J (2018) Drug drug interaction extraction from the literature using a recursive neural network. PLoS One 13:e0190926. Available from: https://dx.plos.org/10.1371/journal.pone.0190926

    Article  Google Scholar 

  9. Sahu SK, Anand A (2018) Drug-drug interaction extraction from biomedical texts using long short-term memory network. J Biomed Inform 86:15–24. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1532046418301606

    Article  Google Scholar 

  10. Asada M, Miwa M, Sasaki Y (2018) Enhancing drug-drug interaction extraction from texts by molecular structure information. Proc 56th Annu meet Assoc Comput linguist (volume 2 short paper). Association for Computational Linguistics, Stroudsburg, PA, USA, pp 680–685. Available from: http://arxiv.org/abs/1805.05593

    Google Scholar 

  11. Mondal I (2020) BERTChem-DDI: improved drug-drug interaction prediction from text using chemical structure information. Proc knowledgeable NLP first work Integr Struct Knowl neural networks NLP. Association for Computational Linguistics, Suzhou, China, pp 27–32. Available from: https://www.aclweb.org/anthology/2020.knlp-1.4

    Google Scholar 

  12. Mostafapour V, Dikenelli O (2019) Attention-wrapped hierarchical BLSTMs for DDI extraction. arXiv

    Google Scholar 

  13. Ren Y, Fei H, Ji D (2019) Drug-drug interaction extraction using a span-based neural network model. In: 2019 IEEE Int Conf Bioinforma Biomed. IEEE, London, pp 1237–1239

    Google Scholar 

  14. Wolfe D, Yazdi F, Kanji S, Burry L, Beck A, Butler C et al (2018) Incidence, causes, and consequences of preventable adverse drug reactions occurring in inpatients: a systematic review of systematic reviews. PLoS One 13:e0205426. Available from: https://dx.plos.org/10.1371/journal.pone.0205426

    Article  Google Scholar 

  15. Ajayi FO, Sun H, Perry J (2000) Adverse drug reactions: a review of relevant factors. J Clin Pharmacol 40:1093–1101

    CAS  PubMed  Google Scholar 

  16. Sui M, Cui L (2017) Constructing a gene-drug-adverse reactions network and inferring potential gene-adverse reactions associations using a text mining approach. Stud Health Technol Inform 245:531–535. Available from: http://europepmc.org/abstract/MED/29295151

    PubMed  Google Scholar 

  17. Kim HH, Rhew K (2017) Analysis of adverse drug reaction reports using text mining. Korean J Clin Pharm 27:221–227. Available from: http:///journal/view.html?doi=10.24304/kjcp.2017.27.4.221

    Article  Google Scholar 

  18. Bollegala D, Maskell S, Sloane R, Hajne J, Pirmohamed M (2018) Causality patterns for detecting adverse drug reactions from social media: text mining approach. JMIR Public Heal Surveill 4:e51. Available from: http://publichealth.jmir.org/2018/2/e51/

    Article  Google Scholar 

  19. Hur J, Özgür A, He Y (2018) Ontology-based literature mining and class effect analysis of adverse drug reactions associated with neuropathy-inducing drugs. J Biomed Semantics 9:17. Available from: https://jbiomedsem.biomedcentral.com/articles/10.1186/s13326-018-0185-x

    Article  Google Scholar 

  20. Chen X, Faviez C, Schuck S, Lillo-Le-Louët A, Texier N, Dahamna B et al (2018) Mining patients’ narratives in social Media for Pharmacovigilance: adverse effects and misuse of methylphenidate. Front Pharmacol 9:541. Available from: https://www.frontiersin.org/article/10.3389/fphar.2018.00541/full

    Article  Google Scholar 

  21. Kusch MKP, Zien A, Hachenberg C, Haefeli WE, Seidling HM (2020) Information on adverse drug reactions—proof of principle for a structured database that allows customization of drug information. Int J Med Inform 133:103970. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1386505619307026

    Article  Google Scholar 

  22. Lagnaoui R, Moore N, Fach J, Longy-Boursier M, Bégaud B (2000) Adverse drug reactions in a department of systemic diseases-oriented internal medicine: prevalence, incidence, direct costs and avoidability. Eur J Clin Pharmacol 56:181–186. Available from: http://link.springer.com/10.1007/s002280050738

    Article  CAS  Google Scholar 

  23. Bucşa C, Farcaş A, Cazacu I, Leucuta D, Achimas-Cadariu A, Mogosan C et al (2013) How many potential drug–drug interactions cause adverse drug reactions in hospitalized patients? Eur J Intern Med 24:27–33. Available from: https://linkinghub.elsevier.com/retrieve/pii/S095362051200249X

    Article  Google Scholar 

  24. Vonbach P, Dubied A, Krähenbühl S, Beer JH (2008) Prevalence of drug–drug interactions at hospital entry and during hospital stay of patients in internal medicine. Eur J Intern Med 19:413–420. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0953620507003895

    Article  Google Scholar 

  25. Raja K, Patrick M, Elder JT, Tsoi LC (2017) Machine learning workflow to enhance predictions of adverse drug reactions (ADRs) through drug-gene interactions: application to drugs for cutaneous diseases. Sci Rep 7:3690. Available from: http://www.nature.com/articles/s41598-017-03914-3

    Article  Google Scholar 

  26. Segura-Bedmar I, Martínez P, Herrero-Zazo M (2014) Lessons learnt from the DDIExtraction-2013 shared task. J Biomed Inform 51:152–164. Available from: https://www.sciencedirect.com/science/article/pii/S1532046414001245

    Article  Google Scholar 

  27. Herrero-Zazo M, Segura-Bedmar I, Martínez P, Declerck T (2013) The DDI corpus: an annotated corpus with pharmacological substances and drug–drug interactions. J Biomed Inform 46:914–920. Available from: http://www.sciencedirect.com/science/article/pii/S1532046413001123

    Article  Google Scholar 

  28. Davis AP, Grondin CJ, Lennon-Hopkins K, Saraceni-Richards C, Sciaky D, King BL et al (2015) The comparative Toxicogenomics Database’s 10th year anniversary: update 2015. Nucleic Acids Res 43:D914–D920

    Article  CAS  Google Scholar 

  29. Bodenreider O (2004) The unified medical language system (UMLS): integrating biomedical terminology. Nucleic Acids Res 32:D267–D270. Available from: https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkh061

    Article  CAS  Google Scholar 

  30. Wishart DS (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34:D668–D672. Available from: https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkj067

    Article  CAS  Google Scholar 

  31. Hewett M (2002) PharmGKB: the pharmacogenetics Knowledge Base. Nucleic Acids Res 30:163–165. Available from: https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/30.1.163

    Article  CAS  Google Scholar 

  32. Torii M, Wagholikar K, Liu H (2011) Using machine learning for concept extraction on clinical documents from multiple data sources. J Am Med Inform Assoc 18:580–587

    Article  Google Scholar 

  33. Wagner AH, Coffman AC, Ainscough BJ, Spies NC, Skidmore ZL, Campbell KM et al (2016) DGIdb 2.0: mining clinically relevant drug-gene interactions. Nucleic Acids Res 44:D1036–D1044

    Article  CAS  Google Scholar 

  34. JAK S (2014) Chapter 13—Introduction to machine learning. In: PSR D, JAK S, Chellappa R, Theodoridis SBT-APL in SP (eds) Acad Press Libr Signal Process Vol 1. Elsevier, Amsterdam, pp 765–773. Available from: https://www.sciencedirect.com/science/article/pii/B9780123965028000139

    Google Scholar 

  35. Holmes G, Donkin A, Witten IH (1994) WEKA: a machine learning workbench. In: Proc ANZIIS ‘94 - Aust new Zealnd Intell Inf Syst Conf, pp 357–361

    Google Scholar 

  36. Blagus R, Lusa L (2013) SMOTE for high-dimensional class-imbalanced data. BMC Bioinformatics 14:106. Available from: https://doi.org/10.1186/1471-2105-14-106

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shukkoor, M.S.A., Raja, K., Baharuldin, M.T.H. (2022). A Text Mining Protocol for Predicting Drug–Drug Interaction and Adverse Drug Reactions from PubMed Articles. In: Raja, K. (eds) Biomedical Text Mining. Methods in Molecular Biology, vol 2496. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2305-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2305-3_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2304-6

  • Online ISBN: 978-1-0716-2305-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics