Skip to main content

Measuring Endocytosis and Endosomal Uptake at Single Cell Resolution

  • Protocol
  • First Online:
Epiblast Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2490))

Abstract

Endocytosis impacts many cell biological functions, including in embryonic stem cells (ESCs). It has been shown that endocytosis is necessary for adequate FGF-signaling within the preimplantation ESC to post-implantation epiblast (EpiLC) pluripotency continuum and is required for proper levels of ERK activation. Quantitative methods at single cell resolution are needed to study endocytosis as well as its regulation and roles in these transitioning populations. The methods in this chapter provide an easily adaptable, multiplexable platform to monitor and quantify endosomal uptake at single cell resolution in live cells following receptor-mediated and non-receptor-mediated endocytosis, including nonspecific mechanisms such as pinocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mettlen M, Chen P-H, Srinivasan S, Danuser G, Schmid SL (2018) Regulation of Clathrin-mediated endocytosis. Annu Rev Biochem 87:871–896

    Article  CAS  Google Scholar 

  2. Palm W, Thompson CB (2017) Nutrient acquisition strategies of mammalian cells. Nature 546(7657):234–242

    Article  CAS  Google Scholar 

  3. Von Zastrow M, Sorkin A (2021) Mechanisms for Regulating and organizing receptor signaling by endocytosis. Annu Rev Biochem 90:709–737

    Article  Google Scholar 

  4. Mayor S, Parton RG, Donaldson JG (2014) Clathrin-independent pathways of endocytosis. Cold Spring Harb Perspect Biol 6(6):a016758

    Article  Google Scholar 

  5. Sangokoya C, Blelloch R (2020) MicroRNA-dependent inhibition of PFN2 orchestrates ERK activation and pluripotent state transitions by regulating endocytosis. Proc Natl Acad Sci U S A 117(34):20625–20635

    Article  CAS  Google Scholar 

  6. De Belly H, Stubb A, Yanagida A, Labouesse C, Jones PH, Paluch EK, Chalut KJ (2021) Membrane tension gates ERK-mediated regulation of pluripotent cell fate. Cell Stem Cell 28(2):273–284

    Article  Google Scholar 

  7. Teis D, Wunderlich W, Huber LA (2002) Localization of the MP1-MAPK scaffold complex to endosomes is mediated by p14 and required for signal transduction. Dev Cell 3(6):803–814

    Article  CAS  Google Scholar 

  8. Rizzo MA, Kraft CA, Watkins SC, Levitan ES, Romero G (2001) Agonist-dependent traffic of raft-associated Ras and Raf-1 is required for activation of the mitogen-activated protein kinase cascade. J Biol Chem 276(37):34928–34933

    Article  CAS  Google Scholar 

  9. Vieira AV, Lamaze C, Schmid SL (1996) Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274(5295):2086–2089

    Article  CAS  Google Scholar 

  10. Lefkowitz RJ, Shenoy SK (2005) Transduction of receptor signals by ß-arrestins. Science 308(5721):512–517

    Article  CAS  Google Scholar 

  11. Sorkin A, Von Zastrow M (2002) Signal transduction and endocytosis: close encounters of many kinds. Nat Rev Mol Cell Biol 3(8):600–614

    Article  CAS  Google Scholar 

  12. Villaseñor R, Kalaidzidis Y, Zerial M (2016) Signal processing by the endosomal system. Curr Opin Cell Biol 39:53–60

    Article  Google Scholar 

  13. Kunath T, Saba-El-Leil MK, Almousailleakh M, Wray J, Meloche S, Smith A (2007) FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development 134(16):2895–2902

    Article  CAS  Google Scholar 

  14. Rideout WM, Wakayama T, Wutz A, Eggan K, Jackson-Grusby L, Dausman J, Yanagimachi R, Jaenisch R (2000) Generation of mice from wild-type and targeted ES cells by nuclear cloning. Nat Genet 2000(24):109–110

    Article  Google Scholar 

  15. Morgani S, Nichols J, Hadjantonakis AK (2017) The many faces of pluripotency: in vitro adaptations of a continuum of in vivo states. BMC Dev Biol 17(1):1–20

    Article  Google Scholar 

  16. Chen AF, Liu AJ, Krishnakumar R, Freimer JW, DeVeale B, Blelloch R (2018) GRHL2-dependent enhancer switching maintains a pluripotent stem cell transcriptional subnetwork after exit from naive pluripotency. Cell Stem Cell 23:226–238

    Article  CAS  Google Scholar 

  17. Yang P, Humphrey SJ, Cinghu S, Pathania R, Oldfield AJ, Kumar D, Perera D, Yang JY, James DE, Mann M, Jothi R (2018) Multi-omic profiling reveals dynamics of the phased progression of pluripotency. Cell Syst 8(5):427–445

    Article  Google Scholar 

  18. Boroviak T, Loos R, Lombard P, Okahara J, Behr R, Sasaki E, Nichols J, Smith A, Bertone P (2015) Lineage-specific profiling delineates the emergence and progression of naive pluripotency in mammalian embryogenesis. Dev Cell 35:366–382

    Article  CAS  Google Scholar 

  19. Factor DC, Corradin O, Zentner GE, Saiakhova A, Song L, Chenoweth JG, McKay RD, Crawford GE, Scacheri PC, Tesar PJ (2014) Epigenomic comparison reveals activation of “seed” enhancers during transition from naive to primed pluripotency. Cell Stem Cell 14:854–863

    Article  CAS  Google Scholar 

  20. Fiorenzano A, Pascale E, D’Aniello C, Acampora D, Bassalert C, Russo F, Andolfi G, Biffoni M, Francescangeli F, Zeuner A, Angelini C, Chazaud C, Patriarca EJ, Fico A, Minchiotti A (2016) Cripto is essential to capture mouse epiblast stem cell and human embryonic stem cell pluripotency. Nat Commun 7:12589

    Article  CAS  Google Scholar 

  21. Krishnakumar R, Chen AF, Pantovich MG, Danial M, Parchem RJ, Labosky PA, Blelloch R (2016) FOXD3 regulates pluripotent stem cell potential by simultaneously initiating and repressing enhancer activity. Cell Stem Cell 18(1):104–117

    Article  CAS  Google Scholar 

  22. Parchem RJ, Ye J, Judson RL, LaRussa MF, Krishnakumar R, Blelloch A, Oldham MC, Blelloch R (2014) Two miRNA clusters reveal alternative paths in late-stage reprogramming. Cell Stem Cell 14(5):617–631

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Eunice Kennedy Shriver National Institute of Child Health and Human Development grant support to C.S. (F32HD088051). Thanks to Robert Blelloch for support and critical analysis. Thanks to Kevin Chen and Kayla Lenshoek from the Blelloch laboratory for critical feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn Sangokoya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sangokoya, C. (2022). Measuring Endocytosis and Endosomal Uptake at Single Cell Resolution. In: Osteil, P. (eds) Epiblast Stem Cells. Methods in Molecular Biology, vol 2490. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2281-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2281-0_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2280-3

  • Online ISBN: 978-1-0716-2281-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics