Skip to main content

Optogenetic Control of TGF-β Signaling

  • Protocol
  • First Online:
TGF-Beta Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2488))

Abstract

Cells employ signaling pathways to make decisions in response to changes in their immediate environment. The Transforming Growth Factor β (TGF-β) signaling pathway plays pivotal roles in regulating many cellular processes, including cell proliferation, differentiation, and migrations. In order to manipulate and explore the dynamic behavior of TGF-β signaling at high spatiotemporal resolution, we developed an optogenetic system (the optoTGFBRs system), in which light is used to control TGF-β signaling precisely in time and space. Here, we describe about experimental details of how to build the optoTGFBRs system and utilize it to manipulate TGF-β signaling in a single cell or a cell population using microscope or LED array, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Massague J (2012) TGF beta signalling in context. Nat Rev Mol Cell Biol 13:616–630

    Article  CAS  Google Scholar 

  2. Blobe GC, Schiemann WP, Lodish HF (2000) Mechanisms of disease: role of transforming growth factor beta in human disease. N Engl J Med 342:1350–1358

    Article  CAS  Google Scholar 

  3. Gordon KJ, Blobe GC (2008) Role of transforming growth factor-beta superfamily signaling pathways in human disease. BBA-Mol Basis Dis 1782:197–228

    Article  CAS  Google Scholar 

  4. Sporn MB, Roberts AB (1990) The transforming growth factor-betas - past, present, and future. Ann N Y Acad Sci 593:1–6

    Article  CAS  Google Scholar 

  5. Wrana JL, Attisano L, Carcamo J, Zentella A, Doody J, Laiho M, Wang XF, Massague J (1992) Tgf-Beta signals through a heteromeric protein-kinase receptor complex. Cell 71:1003–1014

    Article  CAS  Google Scholar 

  6. Feng XH, Derynck R (2005) Specificity and versatility in TGF-beta signaling through Smads. Annu Rev Cell Dev Biol 21:659–693

    Article  CAS  Google Scholar 

  7. Hata A, Chen YG (2016) TGF-beta signaling from receptors to Smads. Cold Spring Harb Perspect Biol 8:a022061

    Article  Google Scholar 

  8. Massague J, Seoane J, Wotton D (2005) Smad transcription factors. Genes Dev 19:2783–2810

    Article  CAS  Google Scholar 

  9. Hill CS (2016) Transcriptional control by the SMADs. Cold Spring Harb Perspect Biol 8:a022079

    Article  Google Scholar 

  10. Chang CB (2016) Agonists and antagonists of TGF-beta family ligands. Cold Spring Harb Perspect Biol 8:a021923

    Article  Google Scholar 

  11. Schlingensiepen KH, Fischer-Blass B, Schmaus S, Ludwig S (2008) Antisense therapeutics for tumor treatment: the TGF-beta2 inhibitor AP 12009 in clinical development against malignant tumors. Recent Results Cancer Res 177:137–150

    Article  CAS  Google Scholar 

  12. Kwiatkowski W, Gray PC, Choe S (2014) Engineering TGF-beta superfamily ligands for clinical applications. Trends Pharmacol Sci 35:648–657

    Article  CAS  Google Scholar 

  13. Lonning S, Mannick J, McPherson JM (2011) Antibody targeting of TGF-beta in cancer patients. Curr Pharmacol Biotechnol 12:2176–2189

    Article  CAS  Google Scholar 

  14. Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940–13945

    Article  CAS  Google Scholar 

  15. Guru A, Post RJ, Ho YY, Warden MR (2015) Making sense of Optogenetics. Int J Neuropsychopharmacol 18:pyv079

    Article  Google Scholar 

  16. Motta-Mena LB, Reade A, Mallory MJ, Glantz S, Weiner OD, Lynch KW, Gardner KH (2014) An optogenetic gene expression system with rapid activation and deactivation kinetics. Nat Chem Biol 10:196–202

    Article  CAS  Google Scholar 

  17. Bugaj LJ, Choksi AT, Mesuda CK, Kane RS, Schaffer DV (2013) Optogenetic protein clustering and signaling activation in mammalian cells. Nat Methods 10:249–252

    Article  CAS  Google Scholar 

  18. Wu YI, Frey D, Lungu OI, Jaehrig A, Schlichting I, Kuhlman B, Hahn KM (2009) A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461:104–U111

    Article  CAS  Google Scholar 

  19. Levskaya A, Weiner OD, Lim WA, Voigt CA (2009) Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461:997–1001

    Article  CAS  Google Scholar 

  20. Kennedy MJ, Hughes RM, Peteya LA, Schwartz JW, Ehlers MD, Tucker CL (2010) Rapid blue-light-mediated induction of protein interactions in living cells. Nat Methods 7:973–U948

    Article  CAS  Google Scholar 

  21. Li Y, Lee M, Kim N, Wu G, Deng D, Kim JM, Liu X, Heo WD, Zi Z (2018) Spatiotemporal control of TGF-beta signaling with light. ACS Synth Biol 7:443–451

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhike Zi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, Y., Zi, Z. (2022). Optogenetic Control of TGF-β Signaling. In: Zi, Z., Liu, X. (eds) TGF-Beta Signaling. Methods in Molecular Biology, vol 2488. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2277-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2277-3_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2276-6

  • Online ISBN: 978-1-0716-2277-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics