Skip to main content

Understanding and Manipulating Assembly Line Biosynthesis by Heterologous Expression in Streptomyces

  • Protocol
  • First Online:
Engineering Natural Product Biosynthesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2489))

Abstract

Assembly line enzymes, including polyketide synthases and nonribosomal peptide synthetases, play central roles in the construction of complex natural products. Due to the sequential biochemistry processed in each domain, the domain architecture of the assembly line enzymes strictly correlates with the product molecule. This colinearity makes assembly line enzymes an ideal target for rational reprogramming. Although many of the past engineering attempts suffered from decreased product yield, recent advancements in the bioinformatic analysis and engineering design now provide new opportunity to work on these modular megaenzymes. This chapter describes the methods for analyzing and engineering the assembly line enzymes, including module and domain analysis needed for designing the engineering of assembly line biosynthesis, and the expression vector construction with an example of two-vector heterologous expression system in Streptomyces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fischbach MA, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 106:3468–3496

    Article  CAS  PubMed  Google Scholar 

  2. Hertweck C (2009) The biosynthetic logic of polyketide diversity. Angew Chem Int Ed Engl 48:4688–4716

    Article  CAS  PubMed  Google Scholar 

  3. Sussmuth RD, Mainz A (2017) Nonribosomal peptide synthesis-principles and prospects. Angew Chem Int Ed Engl 56:3770–3821

    Article  PubMed  CAS  Google Scholar 

  4. Moumbock AFA, Gao M, Qaseem A et al (2020) StreptomeDB 3.0: an updated compendium of streptomycetes natural products. Nucleic Acids Res 49:D600–D604

    Article  PubMed Central  CAS  Google Scholar 

  5. Weissman KJ (2016) Genetic engineering of modular PKSs: from combinatorial biosynthesis to synthetic biology. Nat Prod Rep 33:203–230

    Article  CAS  PubMed  Google Scholar 

  6. Alanjary M, Cano-Prieto C, Gross H et al (2019) Computer-aided re-engineering of nonribosomal peptide and polyketide biosynthetic assembly lines. Nat Prod Rep 36:1249–1261

    Article  CAS  PubMed  Google Scholar 

  7. Nivina A, Yuet KP, Hsu J et al (2019) Evolution and diversity of assembly-line polyketide synthases. Chem Rev 119:12524–12547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang L, Hashimoto T, Qin B et al (2017) Characterization of giant modular PKSs provides insight into genetic mechanism for structural diversification of aminopolyol polyketides. Angew Chem Int Ed Engl 56:1740–1745

    Article  CAS  PubMed  Google Scholar 

  9. Bozhuyuk KAJ, Fleischhacker F, Linck A et al (2018) De novo design and engineering of non-ribosomal peptide synthetases. Nat Chem 10:275–281

    Article  PubMed  CAS  Google Scholar 

  10. Keatinge-Clay AT (2017) Polyketide synthase modules redefined. Angew Chem Int Ed Engl 56:4658–4660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bozhuyuk KAJ, Linck A, Tietze A et al (2019) Modification and de novo design of non-ribosomal peptide synthetases using specific assembly points within condensation domains. Nat Chem 11:653–661

    Article  CAS  PubMed  Google Scholar 

  12. Hashimoto T, Hashimoto J, Kozone I et al (2018) Biosynthesis of quinolidomicin, the largest known macrolide of terrestrial origin: identification and heterologous expression of a biosynthetic gene cluster over 200 kb. Org Lett 20:7996–7999

    Article  CAS  PubMed  Google Scholar 

  13. Menzella HG, Reid R, Carney JR et al (2005) Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes. Nat Biotechnol 23:1171–1176

    Article  CAS  PubMed  Google Scholar 

  14. Walker MC, Thuronyi BW, Charkoudian LK et al (2013) Expanding the fluorine chemistry of living systems using engineered polyketide synthase pathways. Science 341:1089–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marsden AF, Wilkinson B, Cortes J et al (1998) Engineering broader specificity into an antibiotic-producing polyketide synthase. Science 279:199–202

    Article  CAS  PubMed  Google Scholar 

  16. Komatsu M, Komatsu K, Koiwai H et al (2013) Engineered Streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites. ACS Synth Biol 2:384–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huo L, Hug JJ, Fu C et al (2019) Heterologous expression of bacterial natural product biosynthetic pathways. Nat Prod Rep 36:1412–1436

    Article  CAS  PubMed  Google Scholar 

  18. Zhang JJ, Tang X, Moore BS (2019) Genetic platforms for heterologous expression of microbial natural products. Nat Prod Rep 36:1313–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hu Z, Awakawa T, Ma Z et al (2019) Aminoacyl sulfonamide assembly in SB-203208 biosynthesis. Nat Commun 10:184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Gibson DG, Young L, Chuang R-Y et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Y, Buchholz F, Muyrers JP et al (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20:123–128

    Article  CAS  PubMed  Google Scholar 

  22. Zhang JJ, Yamanaka K, Tang X et al (2019) Direct cloning and heterologous expression of natural product biosynthetic gene clusters by transformation-associated recombination. Methods Enzymol 621:87–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fu J, Bian X, Hu S et al (2012) Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nat Biotechnol 30:440–446

    Article  CAS  PubMed  Google Scholar 

  24. Tong Y, Whitford CM, Blin K et al (2020) CRISPR-Cas9, CRISPRi and CRISPR-BEST-mediated genetic manipulation in streptomycetes. Nat Protoc 15:2470–2502

    Article  CAS  PubMed  Google Scholar 

  25. Kudo K, Hashimoto T, Hashimoto J et al (2020) In vitro Cas9-assisted editing of modular polyketide synthase genes to produce desired natural product derivatives. Nat Commun 11:4022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Awakawa T, Zhang L, Wakimoto T et al (2014) A methyltransferase initiates terpene cyclization in teleocidin B biosynthesis. J Am Chem Soc 136:9910–9913

    Article  CAS  PubMed  Google Scholar 

  27. Awakawa T, Fujioka T, Zhang L et al (2018) Reprogramming of the antimycin NRPS-PKS assembly lines inspired by gene evolution. Nat Commun 9:3534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kieser T, Bibb MJ, Buttner MJ et al (2000) Practical streptomyces genetics, vol 291. John Innes Foundation, Norwich

    Google Scholar 

  29. Liu R, Deng Z, Liu T (2018) Streptomyces species: ideal chassis for natural product discovery and overproduction. Metab Eng 50:74–84

    Article  CAS  PubMed  Google Scholar 

  30. Nybo SE, Shepherd MD, Bosserman MA et al (2010) Genetic manipulation of Streptomyces species. Curr Protoc Microbiol. Chapter 10:Unit 10E 13

    Google Scholar 

  31. Rebets Y, Kormanec J, Luzhetskyy A et al (2017) Cloning and expression of metagenomic DNA in Streptomyces lividans and subsequent fermentation for optimized production. Methods Mol Biol 1539:99–144

    Article  CAS  PubMed  Google Scholar 

  32. Ishikawa J, Hotta K (1999) FramePlot: a new implementation of the frame analysis for predicting protein-coding regions in bacterial DNA with a high G + C content. FEMS Microbiol Lett 174:251–253

    Article  CAS  PubMed  Google Scholar 

  33. Lu S, Wang J, Chitsaz F et al (2020) CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res 48:D265–D268

    Article  CAS  PubMed  Google Scholar 

  34. Potter SC, Luciani A, Eddy SR et al (2018) HMMER web server: 2018 update. Nucleic Acids Res 46:W200–W204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  36. Kumar S, Stecher G, Li M et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20:1160–1166

    Article  CAS  PubMed  Google Scholar 

  38. Price MN, Dehal PS, Arkin AP (2010) FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Letunic I, Bork P (2019) Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47:W256–W259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Blin K, Shaw S, Steinke K et al (2019) antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47:W81–W87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Waterhouse A, Bertoni M, Bienert S et al (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–W303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Onaka H, Taniguchi S, Ikeda H et al (2003) pTOYAMAcos, pTYM18, and pTYM19, actinomycete-Escherichia coli integrating vectors for heterologous gene expression. J Antibiot (Tokyo) 56:950–956

    Article  CAS  Google Scholar 

  43. Komatsu M, Uchiyama T, Ōmura S et al (2010) Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc Natl Acad Sci U S A 107:2646–2651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Richter CD, Nietlispach D, Broadhurst RW et al (2008) Multienzyme docking in hybrid megasynthetases. Nat Chem Biol 4:75–81

    Article  CAS  PubMed  Google Scholar 

  45. Keatinge-Clay AT (2012) The structures of type I polyketide synthases. Nat Prod Rep 29:1050–1073

    Article  CAS  PubMed  Google Scholar 

  46. Kushnir S, Sundermann U, Yahiaoui S et al (2012) Minimally invasive mutagenesis gives rise to a biosynthetic polyketide library. Angew Chem Int Ed Engl 51:10664–10669

    Article  CAS  PubMed  Google Scholar 

  47. Miyazawa T, Hirsch M, Zhang Z et al (2020) An in vitro platform for engineering and harnessing modular polyketide synthases. Nat Commun 11:80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sugimoto Y, Ishida K, Traitcheva N et al (2015) Freedom and constraint in engineered noncolinear polyketide assembly lines. Chem Biol 22:229–240

    Article  CAS  PubMed  Google Scholar 

  49. Baltz RH (2012) Streptomyces temperate bacteriophage integration systems for stable genetic engineering of actinomycetes (and other organisms). J Ind Microbiol Biotechnol 39:661–672

    Article  CAS  PubMed  Google Scholar 

  50. Yuzawa S, Deng K, Wang G et al (2017) Comprehensive in vitro analysis of acyltransferase domain exchanges in modular polyketide synthases and its application for short-chain ketone production. ACS Synth Biol 6:139–147

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation for Young Scientists of China (82003631) and National Natural Science Foundation of China General Program (22177092) to L.Z., Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (JSPS KAKENHI Grant Number JP16H06443, JP 20KK0173, and JP20H00490), Japan Science and Technology Agency (JST SICORP Grant No. JPMJSC1701), the New Energy and Industrial Technology Development Organization (NEDO, Grant Number JPNP20011), and AMED (Grant Number JP21ak0101164) to I.A., and JP17H04763, JP19H04641, JP21H02636, UTEC-UTokyo FSI Research Grant Program, Kato Memorial Bioscience Foundation, and The Asahi Glass Foundation, to T.A.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lihan Zhang or Ikuro Abe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, L., Awakawa, T., Abe, I. (2022). Understanding and Manipulating Assembly Line Biosynthesis by Heterologous Expression in Streptomyces. In: Skellam, E. (eds) Engineering Natural Product Biosynthesis. Methods in Molecular Biology, vol 2489. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2273-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2273-5_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2272-8

  • Online ISBN: 978-1-0716-2273-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics