Skip to main content

Genome-Wide Profiling of Transcription Initiation with STRIPE-seq

  • Protocol
  • First Online:
Yeast Functional Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2477))

Abstract

Transcription start site (TSS) usage is a critical factor in the regulation of gene expression. A number of methods for global TSS mapping have been developed, but barriers of expense, technical difficulty, time, and/or cost have limited their broader adoption. To address these issues, we developed Survey of TRanscription Initiation at Promoter Elements with high-throughput sequencing (STRIPE-seq). Requiring only three enzymatic steps with intervening bead cleanups, a STRIPE-seq library can be prepared from as little as 50 ng total RNA in ~5 h at a cost of ~$12 (US). In addition to profiling TSS usage, STRIPE-seq provides information on transcript levels that can be used for differential expression analysis. Thanks to its simplicity and low cost, we envision that STRIPE-seq could be employed by any molecular biology laboratory interested in profiling transcription initiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Calvo SE, Pagliarini DJ, Mootha VK (2009) Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc Natl Acad Sci 106:7507–7512. https://doi.org/10.1073/pnas.0810916106

    Article  PubMed  PubMed Central  Google Scholar 

  2. Malabat C, Feuerbach F, Ma L, Saveanu C, Jacquier A (2015) Quality control of transcription start site selection by nonsense-mediated-mRNA decay. eLife 4:e06722. https://doi.org/10.7554/eLife.06722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kurihara Y, Makita Y, Kawashima M, Fujita T, Iwasaki S, Matsui M (2018) Transcripts from downstream alternative transcription start sites evade uORF-mediated inhibition of gene expression in Arabidopsis. Proc Natl Acad Sci 115:7831–7836. https://doi.org/10.1073/pnas.1804971115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mejía-Guerra MK, Li W, Galeano NF, Vidal M, Gray J, Doseff AI, Grotewold E (2015) Core promoter plasticity between maize tissues and genotypes contrasts with predominance of sharp transcription initiation sites. Plant Cell 27:3309–3320. https://doi.org/10.1105/tpc.15.00630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ushijima T, Hanada K, Gotoh E, Yamori W, Kodama Y, Tanaka H, Kusano M, Fukushima A, Tokizawa M, Yamamoto YY, Tada Y, Suzuki Y, Matsushita T (2017) Light controls protein localization through Phytochrome-mediated alternative promoter selection. Cell 171:1316–1325.e12. https://doi.org/10.1016/j.cell.2017.10.018

    Article  CAS  PubMed  Google Scholar 

  6. Reyes A, Huber W (2018) Alternative start and termination sites of transcription drive most transcript isoform differences across human tissues. Nucleic Acids Res 46:582–592. https://doi.org/10.1093/nar/gkx1165

    Article  CAS  PubMed  Google Scholar 

  7. Pal S, Gupta R, Kim H, Wickramasinghe P, Baubet V, Showe LC, Dahmane N, Davuluri RV (2011) Alternative transcription exceeds alternative splicing in generating the transcriptome diversity of cerebellar development. Genome Res 21:1260–1272. https://doi.org/10.1101/gr.120535.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Haberle V, Li N, Hadzhiev Y, Plessy C, Previti C, Nepal C, Gehrig J, Dong X, Akalin A, Suzuki AM, van Ijcken WFJ, Armant O, Ferg M, Strahle U, Carninci P, Muller F, Lenhard B (2014) Two independent transcription initiation codes overlap on vertebrate core promoters. Nature 507:381–385. https://doi.org/10.1038/nature12974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boyd M, Thodberg M, Vitezic M, Bornholdt J, Vitting-Seerup K, Chen Y, Coskun M, Li Y, Lo BZS, Klausen P, Jan Schweiger P, Pedersen AG, Rapin N, Skovgaard K, Dahlgaard K, Andersson R, Terkelsen TB, Lilje B, Troelsen JT, Petersen AM, Jensen KB, Gögenur I, Thielsen P, Seidelin JB, Nielsen OH, Bjerrum JT, Sandelin A (2018) Characterization of the enhancer and promoter landscape of inflammatory bowel disease from human colon biopsies. Nat Commun 9:1661. https://doi.org/10.1038/s41467-018-03766-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Demircioğlu D, Cukuroglu E, Kindermans M, Nandi T, Calabrese C, Fonseca NA, Kahles A, Lehmann K-V, Stegle O, Brazma A, Brooks AN, Rätsch G, Tan P, Göke J (2019) A pan-cancer transcriptome analysis reveals pervasive regulation through alternative promoters. Cell 178:1465–1477.e17. https://doi.org/10.1016/j.cell.2019.08.018

    Article  CAS  PubMed  Google Scholar 

  11. Murata M, Nishiyori-Sueki H, Kojima-Ishiyama M, Carninci P, Hayashizaki Y, Itoh M (2014) Detecting expressed genes using CAGE. In: Miyamoto-Sato E, Ohashi H, Sasaki H, Nishikawa J, Yanagawa H (eds) Transcription factor regulatory networks: methods and protocols. Springer, New York, NY, pp 67–85

    Chapter  Google Scholar 

  12. Bhardwaj V, Semplicio G, Erdogdu NU, Manke T, Akhtar A (2019) MAPCap allows high-resolution detection and differential expression analysis of transcription start sites. Nat Commun 10:3219. https://doi.org/10.1038/s41467-019-11115-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wakaguri H, Yamashita R, Suzuki Y, Sugano S, Nakai K (2007) DBTSS: database of transcription start sites, progress report 2008. Nucleic Acids Res 36:D97–D101. https://doi.org/10.1093/nar/gkm901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ni T, Corcoran DL, Rach EA, Song S, Spana EP, Gao Y, Ohler U, Zhu J (2010) A paired-end sequencing strategy to map the complex landscape of transcription initiation. Nat Methods 7:521–527. https://doi.org/10.1038/nmeth.1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Arribere JA, Gilbert WV (2013) Roles for transcript leaders in translation and mRNA decay revealed by transcript leader sequencing. Genome Res 23:977–987. https://doi.org/10.1101/gr.150342.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pelechano V, Wei W, Steinmetz LM (2013) Extensive transcriptional heterogeneity revealed by isoform profiling. Nature 497:127. https://doi.org/10.1038/nature12121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gu W, Lee H-C, Chaves D, Youngman EM, Pazour GJ, Conte D, Mello CC (2012) CapSeq and CIP-TAP identify pol II start sites and reveal capped small RNAs as C. elegans piRNA precursors. Cell 151:1488–1500. https://doi.org/10.1016/j.cell.2012.11.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Park D, Morris AR, Battenhouse A, Iyer VR (2014) Simultaneous mapping of transcript ends at single-nucleotide resolution and identification of widespread promoter-associated non-coding RNA governed by TATA elements. Nucleic Acids Res 42:3736–3749. https://doi.org/10.1093/nar/gkt1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Core LJ, Martins AL, Danko CG, Waters C, Siepel A, Lis JT (2014) Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers. Nat Genet 46:1311–1320. https://doi.org/10.1038/ng.3142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kazuo M, Sumio S (1994) Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 138:171–174. https://doi.org/10.1016/0378-1119(94)90802-8

    Article  Google Scholar 

  21. Negroni M, Buc H (2001) Retroviral recombination: what drives the switch? Nat Rev Mol Cell Biol 2:151–155. https://doi.org/10.1038/35052098

    Article  CAS  PubMed  Google Scholar 

  22. Zhu Y, Machleder E, Chenchik A, Li R, Siebert P (2001) Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. BioTechniques 30:892–897

    Article  CAS  PubMed  Google Scholar 

  23. Wulf MG, Maguire S, Humbert P, Dai N, Bei Y, Nichols NM, Corrêa IR, Guan S (2019) Non-templated addition and template switching by Moloney murine leukemia virus (MMLV)-based reverse transcriptases co-occur and compete with each other. J Biol Chem 294:18220–18231. https://doi.org/10.1074/jbc.RA119.010676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang Z, Dietrich FS (2005) Mapping of transcription start sites in Saccharomyces cerevisiae using 5′ SAGE. Nucleic Acids Res 33:2838–2851. https://doi.org/10.1093/nar/gki583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Batut P, Dobin A, Plessy C, Carninci P, Gingeras TR (2013) High-fidelity promoter profiling reveals widespread alternative promoter usage and transposon-driven developmental gene expression. Genome Res 23:169–180. https://doi.org/10.1101/gr.139618.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cumbie JS, Ivanchenko MG, Megraw M (2015) NanoCAGE-XL and CapFilter: an approach to genome wide identification of high confidence transcription start sites. BMC Genomics 16:597. https://doi.org/10.1186/s12864-015-1670-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Poulain S, Kato S, Arnaud O, Morlighem J-É, Suzuki M, Plessy C, Harbers M (2017) NanoCAGE: a method for the analysis of coding and noncoding 5′-capped transcriptomes. In: Napoli S (ed) Promoter associated RNA: methods and protocols. Springer, New York, NY, pp 57–109

    Chapter  Google Scholar 

  28. Cole C, Byrne A, Beaudin AE, Forsberg EC, Vollmers C (2018) Tn5Prime, a Tn5 based 5′ capture method for single cell RNA-seq. Nucleic Acids Res 46:e62–e62. https://doi.org/10.1093/nar/gky182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schon MA, Kellner MJ, Plotnikova A, Hofmann F, Nodine MD (2018) NanoPARE: parallel analysis of RNA 5′ ends from low-input RNA. Genome Res. https://doi.org/10.1101/gr.239202.118

  30. Islam S, Kjällquist U, Moliner A, Zajac P, Fan J-B, Lönnerberg P, Linnarsson S (2011) Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res 21:1160–1167. https://doi.org/10.1101/gr.110882.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R (2013) Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods 10:1096. https://doi.org/10.1038/nmeth.2639

    Article  CAS  PubMed  Google Scholar 

  32. Hagemann-Jensen M, Ziegenhain C, Chen P, Ramsköld D, Hendriks G-J, Larsson AJM, Faridani OR, Sandberg R (2020) Single-cell RNA counting at allele and isoform resolution using smart-seq3. Nat Biotechnol 38:708–714. https://doi.org/10.1038/s41587-020-0497-0

    Article  CAS  PubMed  Google Scholar 

  33. Bagnoli JW, Ziegenhain C, Janjic A, Wange LE, Vieth B, Parekh S, Geuder J, Hellmann I, Enard W (2018) Sensitive and powerful single-cell RNA sequencing using mcSCRB-seq. Nat Commun 9:2937. https://doi.org/10.1038/s41467-018-05347-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, Trombetta JJ, Weitz DA, Sanes JR, Shalek AK, Regev A, McCarroll SA (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161(5):1202–1214. https://doi.org/10.1016/j.cell.2015.05.002

  35. Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, Gregory MT, Shuga J, Montesclaros L, Underwood JG, Masquelier DA, Nishimura SY, Schnall-Levin M, Wyatt PW, Hindson CM, Bharadwaj R, Wong A, Ness KD, Beppu LW, Deeg HJ, McFarland C, Loeb KR, Valente WJ, Ericson NG, Stevens EA, Radich JP, Mikkelsen TS, Hindson BJ, Bielas JH (2017) Massively parallel digital transcriptional profiling of single cells. Nature Communications 8(1) https://doi.org/10.1038/ncomms14049

  36. Policastro RA, Raborn RT, Brendel VP, Zentner GE (2020) Simple and efficient profiling of transcription initiation and transcript levels with STRIPE-seq. Genome Res 30:910–923. https://doi.org/10.1101/gr.261545.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

    Google Scholar 

  39. Smith TS, Heger A, Sudbery I (2017) UMI-tools: modelling sequencing errors in unique molecular identifiers to improve quantification accuracy. Genome Res 27(3):491–499. https://doi.org/10.1101/gr.209601.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17(3). https://doi.org/10.14806/ej.17.1.200

  41. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. https://doi.org/10.1093/bioinformatics/bts635

    Article  CAS  PubMed  Google Scholar 

  42. Policastro RA, McDonald DJ, Brendel VP, Zentner GE (2021) Flexible analysis of TSS mapping data and detection of TSS shifts with TSRexploreR. NAR Genom and Bioinforma 3:lqab051. https://doi.org/10.1093/nargab/lqab051

    Article  Google Scholar 

  43. Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, Ponjavic J, Semple CA, Taylor MS, Engstrom PG, Frith MC (2006) Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet 38:626–635. https://doi.org/10.1038/ng1789

    Article  CAS  PubMed  Google Scholar 

  44. Zajac P, Islam S, Hochgerner H, Lönnerberg P, Linnarsson S (2014) Base preferences in non-templated nucleotide incorporation by MMLV-derived reverse Transcriptases. PLoS One 8:e85270. https://doi.org/10.1371/journal.pone.0085270

    Article  CAS  Google Scholar 

  45. Policastro RA, McDonald DJ, Brendel VP, Zentner GE, (2021) Flexible analysis of TSS mapping data and detection of TSS shifts with TSRexploreR. NAR Genomics and Bioinformatics 3(2) https://doi.org/10.1093/nargab/lqab051

  46. Rohland N, Reich D (2012) Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res 22:939–946. https://doi.org/10.1101/gr.128124.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Krueger F, Andrews SR, Osborne CS (2011) Large scale loss of data in low-diversity Illumina sequencing libraries can be recovered by deferred cluster calling. PLoS One 6:e16607. https://doi.org/10.1371/journal.pone.0016607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mitra A, Skrzypczak M, Ginalski K, Rowicka M (2015) Strategies for achieving high sequencing accuracy for low diversity samples and avoiding sample bleeding using illumina platform. PLoS One 10:e0120520–e0120520. https://doi.org/10.1371/journal.pone.0120520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel E. Zentner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Policastro, R.A., Zentner, G.E. (2022). Genome-Wide Profiling of Transcription Initiation with STRIPE-seq. In: Devaux, F. (eds) Yeast Functional Genomics. Methods in Molecular Biology, vol 2477. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2257-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2257-5_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2256-8

  • Online ISBN: 978-1-0716-2257-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics