Skip to main content

Super-resolution Chromatin Visualization Using a Combined Method of Fluorescence In Situ Hybridization and Structured Illumination Microscopy in Solanum lycopersicum

  • Protocol
  • First Online:
Plant Gametogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2484))

Abstract

Chromatin organization influences gene and transposon expression, and regulates various cellular processes. Higher order chromatin structure has been widely studied using genomic approaches and microscopy image analyses. Chromosome conformation capture and sequencing the junction of DNA fragments enables the study of both chromatin interaction and chromosome folding. However, certain cell types are embedded in other cell types which complicate the process of studying them using high-throughput genomic approaches. To overcome this limitation, high-resolution microscopy techniques are now available to investigate chromatin organization in single cells. In this chapter, we provide a detailed protocol to prepare chromosome spreading from tomato nuclei, to label genomic loci by fluorescence in situ hybridization, and to visualize these locations at high resolution with Structured Illumination microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lieberman-Aiden E, van Berkum NL, Williams L et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293

    Article  CAS  Google Scholar 

  2. Gibcus JH, Dekker J (2013) The hierarchy of the 3D genome. Mol Cell 49:773–782

    Article  CAS  Google Scholar 

  3. Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11(3):204–220

    Article  CAS  Google Scholar 

  4. Mercier R, Mézard C, Jenczewski E et al (2015) The molecular biology of meiosis in plants. Annu Rev Plant Biol 66:297–327

    Article  CAS  Google Scholar 

  5. Kleckner N (2006) Chiasma formation: chromatin/axis interplay and the role(s) of the synaptonemal complex. Chromosoma 115(3):175–194

    Article  Google Scholar 

  6. Pecinka A, Chevalier C, Colas I et al (2020) Chromatin dynamics during interphase and cell division: similarities and differences between model and crop plants. J Exp Bot 71(17):5205–5222

    Article  CAS  Google Scholar 

  7. Lambing C, Franklin FCH, Wang CJR (2017) Understanding and manipulating meiotic recombination in plants. Plant Physiol 173:1530–1542

    Article  CAS  Google Scholar 

  8. Sati S, Cavalli G (2017) Chromosome conformation capture technologies and their impact in understanding genome function. Chromosoma 126:33–44

    Article  Google Scholar 

  9. Dixon JR, Selvaraj S, Yue F et al (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–380

    Article  CAS  Google Scholar 

  10. Liu C, Cheng YJ, Wang JW et al (2017) Prominent topologically associated domains differentiate global chromatin packing in rice from Arabidopsis. Nat Plants 3:742–748

    Article  CAS  Google Scholar 

  11. Golicz AA, Bhalla PL, Edwards D et al (2020) Rice 3D chromatin structure correlates with sequence variation and meiotic recombination rate. Commun Biol 2:235

    Article  Google Scholar 

  12. Dong Q, Li N, Li X et al (2018) Genome-wide Hi-C analysis reveals extensive hierarchical chromatin interaction in rice. Plant J 94:1141–1156

    Article  CAS  Google Scholar 

  13. Feng S, Cokus SJ, Schubert V et al (2014) Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis. Mol Cell 55:694–707

    Article  CAS  Google Scholar 

  14. Concia L, Veluchamy A, Ramirez-Prado JS et al (2020) Wheat chromatin architecture is organized in genome territories and transcription factories. Genome Biol 21(1):104

    Article  CAS  Google Scholar 

  15. Armstrong SJ, Franklin FC, Jones GH (2001) Nucleolus-associated telomere clustering and pairing precede meiotic chromosome synapsis in Arabidopsis thaliana. J Cell Sci 114:4207–4217

    Article  CAS  Google Scholar 

  16. Zhang J, Pawlowski WP, Han F (2013) Centromere pairing in early meiotic prophase requires active centromeres and precedes installation of the synaptonemal complex in maize. Plant Cell 25:3900–3909

    Article  CAS  Google Scholar 

  17. Lambing C, Osman K, Nuntasoontorn K et al (2015) Arabidopsis PCH2 mediates meiotic chromosome remodeling and maturation of crossovers. PLoS Genet 11:e1005372

    Article  Google Scholar 

  18. Darrier B, Arrieta M, Mittmann SU et al (2020) Following the formation of synaptonemal complex formation in wheat and barley by high-resolution microscopy. Methods Mol Biol 2061:207–215

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Alessandro di Maio (University of Birmingham) for his advice and knowledge of SIM. This work was supported by a BBSRC grant-aided support as part of the Institute Strategic Programme designing Future Wheat Grant (BP/P016855/1) and the BBSRC grant 1644151.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pallas Kuo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kuo, P., Darbyshire, A., Lambing, C. (2022). Super-resolution Chromatin Visualization Using a Combined Method of Fluorescence In Situ Hybridization and Structured Illumination Microscopy in Solanum lycopersicum. In: Lambing, C. (eds) Plant Gametogenesis. Methods in Molecular Biology, vol 2484. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2253-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2253-7_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2252-0

  • Online ISBN: 978-1-0716-2253-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics