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Abstract

Experiments that compare rhythmic properties across different genetic alterations and entrainment condi-
tions underlie some of the most important breakthroughs in circadian biology. A robust estimation of the
rhythmic properties of the circadian signals goes hand in hand with these discoveries. Widely applied
traditional signal analysis methods such as fitting cosine functions or Fourier transformations rely on the
assumption that oscillation periods do not change over time. However, novel high-resolution recording
techniques have shown that, most commonly, circadian signals exhibit time-dependent changes of periods
and amplitudes which cannot be captured with the traditional approaches. In this chapter we introduce a
method to determine time-dependent properties of oscillatory signals, using the novel open-source
Python-based Biological Oscillations Analysis Toolkit (pyBOAT). We show with examples how to detect
rhythms, compute and interpret high-resolution time-dependent spectral results, analyze the main oscilla-
tory component, and to subsequently determine these main components’ time-dependent instantaneous
period, amplitude, and phase. We introduce step-by-step how such an analysis can be done by means of the
easy-to-use point-and-click graphical user interface (GUI) provided by pyBOAT or executed within a
Python programming environment. Concepts are explained using simulated signals as well as experimen-
tally obtained time series.

Key words Circadian clocks, Data analysis, Oscillations, Time series analysis, Wavelets, Nonstationary
signals, Spectral analysis, Synchronization

1 Introduction

Circadian oscillations are present at all scales of an organism, from
the cellular up to the behavioral level. Recent improvements in the
experimental techniques have allowed unprecedented long-term
high-resolution recordings in cultures of individual cells, ex vivo
tissues and even in vivo from freely moving animals [1–4]. In some
cases, these rhythms show robust stable oscillations with steady
period and amplitude, but most frequently they show time-
dependent fluctuations in period, amplitude, and trends. Neverthe-
less, when it comes to quantifying these rhythms, the vast majority
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of the circadian community still relies on software tools that, at
their core, rely on methods designed under the premise that oscil-
lations have static time-independent components, also known as
the stationarity assumption. Among others, stationarity-based
methods implemented ubiquitously in analytical software tools
include the well-known Fourier transformations, Lomb Scargle
periodograms, and cosinor analysis [5].

For specific cases, the biological data analysis community has
developed data-analysis tools tailored to the characterization of
nonstationary oscillatory components [6, 7]. These new set of
robust software solutions are in practice incorporated as an addi-
tional step within larger data analysis pipelines that typically include
preprocessing denoising, detrending, and normalization. We have
recently shown that such multistep pipelines that combine prepro-
cessing steps with a subsequent analysis of oscillatory properties can
lead to significant spectral artifacts that often remain undetected
[8]. In this chapter, we describe through examples how to use a
recently published multistep open-source software tool, pyBOAT,
that integrates all required steps for the analysis of raw circadian
data. PyBOAT implements wavelet analysis and was specifically
designed for noisy nonstationary datasets that by-design overcomes
potential spectral artifacts of the most frequent preprocessing steps
in time series data analysis.

In Subheading 2 of this chapter we provide a set of online
sources to download and install pyBOAT. In Subheading 3.1, we
describe the graphical user interface to carry out a spectral analysis
and generate figures of the results. Finally, in Subheading 3.2, we
introduce a flexible scripting-based implementation of pyBOAT.

2 Materials

Software:

1. pyBOAT is a freely available open-access software that runs on
multiple mainstream operating systems such as Linux, MacOS,
and Windows. It requires a Python 3.x version to be installed
on the system.

2. A convenient approach to install Python together with
pyBOAT is by means of Anaconda, an open-source Python
and R programming language distribution that aims at simpli-
fying package management for scientific computing. Anaconda
has a graphical user interface (GUI), the Anaconda Navigator,
and thus requires no use of the command-line. An installation
manual for Anaconda can be found on: https://docs.anaconda.
com/anaconda/install/
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3. A detailed guide how to install pyBOATusing Anaconda can be
found at https://github.com/tensionhead/pyBOATor by fol-
lowing the steps in the pyBOAT’s video installation tutorial
http://granadalab.org/media/

4. In case Anaconda or its package manager conda is already
installed on the machine, pyBOAT can be installed via the
command line by typing

conda config --add channels conda-forge

conda install pyboat

5. pyBOAT can be installed without conda using the package-
management system pip by typing

pip install pyboat

into the command-line.

3 Methods

3.1 Graphical User

Interface

pyBOAT contains an easy-to-use graphical user interface (GUI)
that requires no programming experience. In the following para-
graphs we will introduce step by step how to perform a wavelet
analysis of circadian time series data using the GUI of pyBOAT. In
order to illustrate the strength of our wavelet analysis approach, we
will first investigate a simulated oscillatory time series with well-
known properties. Experimental data is then subsequently analyzed
in Subheadings 3.1.8 and 3.2.6.

3.1.1 Example Data Commonly applied time series analysis methods such as Fourier
analysis, Lomb-Scargle periodograms, or fitting of harmonic func-
tions reliably estimate the period of main oscillatory components as
long as oscillatory properties remain stable or vary little over time.
In contrast, time-frequency methods such as wavelet analysis are
well suited to uncover time-dependent (i.e., instantaneous) periods
and amplitudes. In order to illustrate the strength of wavelet analy-
sis, we analyze a simulated nonstationary, noisy oscillatory time
series whose period changes linearly from 22 to 26 h within a
week. This synthetic signal additionally exhibits a nonlinear baseline
expression trend as well as a decaying amplitude, signal properties
often encountered in practice.

3.1.2 Download Example

Data

In Subheading 3.2.1 we describe how to simulate and save the
example time series data that we are going to analyze in the next
paragraphs, using Python commands. Alternatively, the data can be
downloaded from the following link: https://github.com/
cschmal/chapter-wavelets
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3.1.3 Launch pyBOAT The graphical user interface of pyBOAT can be started either by
launching it from the Anaconda Navigator or by typing pyboat into
the command line.

3.1.4 Import Data The main window of pyBOAT (Fig. 1a) contains three elements.
The Start Generator button on the right column launches a signal
generator to analyze synthetic (simulated) signals (seeNote 1). This
can be useful for teaching purposes or to accommodate with the

Fig. 1 Data import and parameter setup for the analytic wavelet transform. (a) Main window of pyBOAT. (b)
Data Import Options window. (c) The DataViewer shows the imported data, plots the time series and trend of
interest, and allows to define parameters for sinc filter detrending and the subsequent wavelet analysis
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properties and features of pyBOAT and its underlying wavelet
analysis. The buttons within the left column allow to import
external data:

1. pyBOAT expects tabular data in one of the supported formats
.xls, .xlsx, .csv, .tsv, or .txt. Each column should contain a time
series signal, sampled at equidistant time points (see Note 2).

2. Click on the Open button and select the file that contains the
data to be imported. Column names are automatically inferred
from the first row of the data file. We can use this option to
import the data set from Subheading 3.1.2.

3. Click on the Import button for more importing options as
shown in Fig. 1b. For nonstandard data formats, uncheck
Separator from extension and specify a custom Column separa-
tor in the corresponding box. In case the first row of the data
file does not contain column names, check the No header row
present box. In addition, you can choose to check the Interpo-
late missing values option for a linear interpolation of gaps in
your data set (see Note 3).

4. After importing the data, the DataViewer window opens as
shown in Fig. 1c. Within the DataViewer you can see the
head of the imported data and set various options for the
subsequent analysis.

5. First, choose a data column for further analysis. We will analyze
the second column since the first column contains the time
points of data sampling in our data set. This column can be
chosen either by clicking on the respective column or by choos-
ing the column name within the Select Signal box.

6. Second, we need to specify the sampling interval and
corresponding time unit. In our example we analyze
(simulated) data that has been sampled at a 15-min interval.
Thus, we choose “0.25” within the Sampling Interval box and
“hours” within the Time Unit box, see upper part of Fig. 1c.

7. Click theRefresh Plot button. One should now see the raw time
series signal for the chosen time axis units in the Signal and
Trend plotting window (Fig. 1c bottom left).

3.1.5 Detrending Circadian time series often exhibit long-term changes in their mag-
nitude of oscillation. While changes in this magnitude can be
informative by themselves, it is often useful to remove this baseline
trend for a better representation of oscillatory components and
further analysis. In Mönke et al. [8] we argue that the sinc filter is
a good choice for removing nonlinear trends (low frequency com-
ponents) of oscillating time series, while minimizing common
detrending artifacts such as spurious oscillations. The sinc filter
works as a step function in the frequency domain. It removes signal
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components that are larger than a predefined cutoff period and
neither attenuates nor amplifies components below this cutoff
period [8].

1. Choose a cutoff period for the sinc filter by typing a numerical
value into the Cut-off Period box of the Sinc Detrending panel
within theDataViewer. Here, we chose a cutoff period of 48 h,
i.e., roughly twice as long as the expected period of the circa-
dian signal (Fig. 1c, see Note 4).

2. Check the box Trend within the Plotting Options of the Data-
Viewer to plot the trend, determined by the sinc filter. The
nonlinear parabola-shaped trend of this synthetic time series is
nicely captured (Fig. 1c purple line).

3. One can plot the detrended time series by additionally checking
the Detrended Signal box.

4. The raw data, trend, and detrended time series data can be
saved into a three-column data file via the Save Filter Results
button. Supported output formats are *.txt, *.csv, or *.xlsx.

3.1.6 Analysis and

Detection of Periodic

Signals Using Wavelets

1. For wavelet-based time frequency analysis, a mother wavelet
(seeNote 5) probes the signal of interest along the time axis for
a range of predefined frequencies or periods. This range of
periods of interest has to be supplied by the user within the
Analysis panel of the DataViewer. One can specify the periods
to be analyzed between a Lowest period and a Highest period at
equidistant steps for a given total Number of periods by typing
numerical values into the corresponding boxes. Periods outside
of this user-defined range will not be included in the
subsequent analysis, so especially for an explorative analysis it
is recommended to initially choose a wide interval of potential
periods.

2. Here, we chose a lowest period of 0.5 h, tantamount to the
Nyquist period given by two-times the sampling interval. The
Nyquist period is also the default value used by pyBOAT (see
Fig. 1c).

3. In order to perform the wavelet analysis on the sinc-detrended
time series one has to check the Use Detrended Signal box.

4. Click on the Analyze Signal button to perform the wavelet
analysis.

5. After the computation is done, the Wavelet Spectrum window
opens, see Fig. 2a. The upper part of the window shows the
analyzed signal, i.e., in our case the detrended time series. The
middle part of the window shows the wavelet spectrogram, the
main result of our time frequency analysis. Such spectrogram
gives a detailed time-resolved picture that is able to unveil time-
dependent oscillatory properties (see Fig. 2a) as well as multiple
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oscillatory components such as ultradian rhythms subordinated
to circadian oscillations [7].

6. The region of maximum power shows a clear trend toward
longer periods for later times t and thus successfully captures
the linear evolution from a period of 22 h up to 26 h within
1 week as described in Subheading 3.1.1. The decaying power
for later times t reflects the decaying amplitude of the signal.

3.1.7 Ridge Analysis

Reveals the Main Rhythmic

Component

Although the wavelet spectrogram gives a complete picture of the
time-resolved oscillatory properties, potentially including multiple
dominant periods, one is often interested in identifying a main
oscillatory component and its properties. Such main oscillatory
component can be deduced from a wavelet ridge (see Note 6).
pyBOAT connects the set of maximal power values in the spectro-
gram along successive time points to determine the ridge:

1. Click on the Detect Maximum Ridge button within the Ridge
Detection panel of the Wavelet Spectrum window to compute
the maximum power ridge. Subsequently, a bold red line
depicts the ridge within the wavelet spectrogram (see Fig. 2a).

Fig. 2 Wavelet analysis and ridge readout. (a) Wavelet spectrum window. Upper window depicts the analyzed
signal, i.e., in our case the sinc-detrended time series. Bottom window depicts the wavelet spectrogram
together with the detected maximum power ridge (bold red line) and the cones of influence (gray dashed-
dotted lines). (b) Wavelet Results window, obtained by clicking on the Plot Ridge Readout button in panel a.
Depicted are the time-dependent (instantaneous) period (upper left), phase (upper right), amplitude (bottom
left), and maximum power values (bottom right) as evaluated from the maximum power ridge in panel a. (c)
Comma-separated value (csv) readout, obtained by clicking on the Save Results button in panel b
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2. In order to avoid evaluation of the ridge within a low spectral
power (noise) regime, one can set a minimum wavelet power
threshold (see Note 7) by typing a numerical value into the
Ridge Threshold box of the Ridge Detection panel.

3. To work around sudden jumps within the ridge, e.g., due to
poor spectral resolution of the transform, the ridge can also be
smoothed by choosing a Savitzky-Golay window size.

4. Click on the Plot Ridge Readout button to evaluate the time-
dependent (instantaneous) period, amplitude, power, and
phase of the main oscillatory component. A new window
termed Wavelet Results will subsequently open, see Fig. 2b.

5. The Wavelet Results window shows the time-dependent oscil-
lation period (upper left), phase (upper right), and amplitude
(bottom left) as well as the spectrogram power along the maxi-
mum ridge (bottom right). Values within or outside the cone of
influence are depicted by dashed or bold lines, respectively (see
Note 8).

6. To save these results click on Save Results at the bottom of the
window. Supported formats are *.txt, *.csv, and *.xlsx. See
Fig. 2c for an example readout.

3.1.8 Ensemble Analysis The GUI of pyBOAT provides a convenient way to analyze large
ensembles of time series data (see Note 9) and gives various sum-
mary statistics such as the ensembles period and amplitude distri-
bution or phase coherence. We demonstrate this functionality using
a PER2::LUC bioluminescence recording within coronal slices of
the mammalian central pacemaker—the suprachiasmatic nucleus
(SCN)—as previously published in Abel et al. [1]. Within this
data set, SCN slices have been treated with tetrodotoxin (TTX) to
suspend spike-associated couplings, 4 days after starting the in vitro
recordings. After another 6 days, TTX has been washed out from
the medium. Circadian oscillatory signals of individual SCN neu-
rons could be identified and tracked throughout the time lapse
recordings, see Abel et al. for further details. Within the next
steps we study the effect of TTX on dynamical properties of the
SCN neurons circadian PER2::LUC oscillations using the batch
analysis function of pyBOAT:

1. PER2::LUC oscillatory time series and the corresponding loca-
tions of SCN neurons within the time lapse recordings of
ex vivo SCN slices as published in Abel et al. can be
downloaded from: https://github.com/JohnAbel/scn-
resynchronization-data-2016

2. Here, we chose the data set “scn2_full_data.csv.” It contains
264 times series recorded from the tracked individual SCN
neurons. Since the file lacks descriptive headers in the first
row, we import the data via the Import button of pyBOATs
main screen and check the No header row present box.
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3. After importing the data, we set the Sampling Interval to 1 and
the Time Unit as “h” as used in the experimental protocol, see
Fig. 3a.

4. Amplitudes of PER2::LUC oscillations drastically decrease
upon TTX treatment. To reduce edge effects at this transition
for sinc filter detrending, we choose a relatively low filter cutoff
of 36 h (see Note 10), compare Fig. 3a.

5. Once suitable parameters for sinc detrending and the
subsequent wavelet analysis have been found (compare
Fig. 3a, b), one can run the batch or ensemble analysis by
clicking on the Analyze All button.

6. Choose the Summary Statistics of interest, Ridge Detection
parameters as described above and required export options
within the Batch Processing window.

7. Check the Ensemble Dynamics box in the Summary Statistics
panel and click on the Run for 264 Signals button to execute
the batch analysis.

Fig. 3 Analysis of large data sets. (a) The DataViewer window of pyBOAT. A large data set has been imported
that contains 264 bioluminescence time series signals obtained by individual tracking of SCN neurons within a
cultured SCN slice at a sampling rate of 1 h. (b) Wavelet analysis of a bioluminescence recording from an
individual SCN neuron stored in column one as shown in panel a. (c) The Batch Processing window allows to
specify options for the analysis of large ensemble data sets. (d) Summary statistics of the corresponding
ensemble analysis of all 264 recordings. Bold lines denote averages while shaded areas denote standard
deviations of oscillation properties evaluated along the maximum power ridges of all signals
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8. The Ensemble Dynamicswindow depicts the mean and standard
deviation of the time-dependent (instantaneous) period, ampli-
tude and wavelet spectrum power as well as the phase coher-
ence for the whole ensemble of signals. It can be seen that
application of TTX reversibly broadens the period distribution
(i.e., standard deviation increases), decreases the phase coher-
ence, and leads to a decrease in amplitude which can be indica-
tive for a reduced relative coupling strength as described
previously [9–11].

3.2 Implementing

pyBOAT Within a

Python Script

Even though pyBOAT has an easy-to-use graphical user interface
(GUI), it can be more convenient in some cases to run the analysis
routines of pyBOAT within a Python script. This applies, for exam-
ple, to cases where the wavelet analysis provided by pyBOAT is only
part of a larger analysis pipeline or to cases of extremely long time
series data where, due to the long computation time of wavelet
spectra, the practitioner could want to run the analysis on an
external computing cluster.

In the following sections we demonstrate how to analyze time
series data with pyBOAT using the Python programming language.
The code can be run either by executing each line in an interactive
command shell such as IPython or a Jupyter Notebook, or by
copying the code into a file—e.g., “example.py”—and running it
in the shell using the command python example.py.

3.2.1 Generating

Simluated Complex

Oscillatory Time Series

Data

The following steps show how to create and save the example time
series data as analyzed in Subheadings 3.1.4–3.1.7.

1. The NumPy scientific computing library for Python provides
convenient ways to simulate rhythmic time series. The library
can be imported via

import numpy as np

2. We define an equidistant set of time points, using a sampling
interval of 15 min for an overall length of 1 week:

dt = 0.25 # Sampling interval in hours

tvec = np.arange(0, 7 * 24 + dt, dt) # Time array

Please note that the Python interpreter ignores everything
that follows a “#” within a given line.

3. We next define a time-dependent (instantaneous) period of the
simulated time series that linearly lengthens from 22 to 26 h
within 1 week:

T = 22. + 4. / (7. * 24.) * tvec
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4. An oscillatory signal based on this instantaneous period T is
constructed via the NumPy cosine function:

signal = np.cos(2 * np.pi / T * tvec)

5. In many cases, such as bioluminescence recordings in cell cul-
ture or tissue slices, the corresponding circadian time series
exhibit a decay in amplitude. We model this by introducing
an exponential decay at a half-life of 48 h:

signal = signal * np.e**(-np.log(2) / 48. * tvec)

6. In addition, many experimental circadian time series show a
nonlinear trend in baseline expression or magnitude. Here, we
add a simple nonlinear baseline trend to our signal, given by a
mirrored parabola

signal += -tvec * (tvec – 8 * 24) * 0.0002

7. Noise is omnipresent in biological signals and can be due to
uncertainties in the measurement process or due to the intrinsic
probabilisitic nature of biological processes. Noise can con-
found otherwise precise deterministic observables of interest
but can, on the other hand, also be a critical function to drive
biological processes [12, 13]. Here, we add for illustrative
purposes uncorrelated (Gaussian) white noise to our simulated
time series by adding an array of normally distributed random
numbers of standard deviation 0.15 and of mean 0, using the
“normal” function of NumPy’s “random” package:

signal += np.random.normal(loc=0, scale=0.15, size=len(tvec))

The impact of different kinds of noise as well as noise
strength are discussed in more detail in Mönke et al. [8].

3.2.2 Import and

Initialization of the Wavelet

Analyzer

1. Import the wavelet analyzer of pyBOAT by typing

from pyboat import WAnalyzer

2. Analogously to Subheading 3.1.6, step 1, we first define a set
of periods to be analyzed by the wavelet based time-frequency
analysis. For this sake, we use the linspace function of the
Numpy package:

periods = np.linspace(start=2*dt, stop=48, num=200)

Above function generates an array of elements with values
between the Nyquist period 2*dt and 48 h in 200 equidistant
steps.
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3. We choose the time unit (here “hours”) and initialize the
wavelet analyzer via

wAn = WAnalyzer(periods, dt, time_unit_label=’hours’)

4. pyBOAT follows up on the pythonic idea of “introspection,”
e.g., typing

help(wAn)

shows a comprehensive documentation of the WAnalyzer and
its methods.

5. In order to show pyBOAT’s results interactively we import the
Python Matplotlib library via

import matplotlib.pyplot as plt

6. Typing

plt.ion()

turns the interactive plotting mode on.

3.2.3 Detrending Analogously to Subheading 3.1.5, we first detrend the raw time
series using sinc filter smoothing as implemented within the
pyBOAT package:

1. Define a sinc filter cutoff period in hours

T_c = 48

2. The sinc_smooth function of the pyBOAT package requires two
arguments, the raw signal that we aim to detrend as well as the
cutoff period from step 1 of this section:

trend = wAn.sinc_smooth(signal, T_c=T_c)

3. We subsequently obtain the detrended time series via subtract-
ing the trend from the original signal

detrended_signal = signal – trend

4. pyBOAT offers functions to plot the time series and
corresponding trend:

wAn.plot_signal(signal, label=’Raw signal’, color=’red’, al-

pha=0.5)

wAn.plot_trend(trend, label=’Trend’)
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Note that any arguments (e.g., “label,” “color,” or
“alpha”) that are accepted by the plot function of theMatplotlib
package can be provided to above functions.

3.2.4 Computing the

Wavelet Spectrum

1. We defined the parameters that are required for the wavelet
analysis already in Subheading 3.2.2, step 3. We now perform
the wavelet analysis on the detrended time series by typing

modulus, transform = wAn.compute_spectrum(detrended_signal)

This function also spawns a plot, showing the signal time-
aligned with the wavelet power spectrum as obtained from the
GUI (Fig. 2a).

2. Here, “modulus” is a two-dimensional real valued array con-
taining the Wavelet power spectrum while “transform” is a
two-dimensional array representing the direct output of the
complex convolutions with the Morlet mother wavelet. The
number of rows equals the number of periods and the number
of columns equals the length of the signal for both arrays.

3. Both objectsmodulus and transform are Numpy arrays and can
be saved using, e.g., the Numpy function np.savetxt or the
Python pickle module.

3.2.5 Detect and

Evaluate the Wavelet Ridge

Analogously to Subheading 3.1.7, we compute and evaluate the
maximal power ridge of the wavelet spectrum:

1. ridge_results = wAn.get_maxRidge()

determines the maximum power ridge of the wavelet spectrum
computed in Subheading 3.2.4, step 1 (see Note 11).

2. To plot the maximum ridge as a red line in the wavelet spectro-
gram, type

wAn.draw_Ridge()

3. The object “ridge_results” defined in step 1 contains the
instantaneous period, phase, amplitude, and maximum power
values along the maximum power ridge of the wavelet spec-
trum. It is in a pandas DataFrame format such that the conve-
nient I/O functions of the pandas software library can be used
to save the results. For example,

ridge_results.to_csv("save_ridge.csv")

saves the results as a comma-separated values (csv) file, named
“save_ridge.csv”. Excel users might want to save their data into
an Excel sheet using

ridge_results.to_excel("save_ridge.xlsx")
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4. These instantaneous properties can be plotted by typing

wAn.plot_readout(draw_coi=True)

which reproduces Fig. 2b.

3.2.6 Import and Analysis

of Experimental Datasets

In this paragraph we study a previously published experimental data
set. We show how such data can be imported within a Python
scripting environment and subsequently analyze it.

The data set: Circadian rhythms are generated at the intracel-
lular level through multiple interlocked regulatory feedback loops
[14]. In mammals the negative feedback loop is composed of the
Period (Per1, Per2, Per3), Cryptochrome (Cry1, Cry2), and Bmal1
clock genes, see Fig. 4a. This core loop is intertwined with multiple
other loops such as the Bmal1 andReverb (Reva andRevb) negative
feedback loop [15]. Recently, it has been shown that perturbations
of the system given by jet-lag, light pulses, SCN slice preparations,
or culture medium exchange induce differential dynamical changes
among different clock genes [16–20] and that these differential
perturbation responses could be explained by the topology of the
intracellular regulatory network [21]. Such differential responses
translate into (at least transiently) different instantaneous ampli-
tudes and periods among different clock genes and should thus be
analyzed by a time-frequency analysis that can account for these
complex and time-varying dynamical properties. In the next para-
graphs we analyze Bmal1-ELuc and Per1-luc reporter expression
within SCN slices of double-transgenic mice that express both
reporters simultaneously as previously described in Ono et al. [19].

1. The data has been stored in a text-file “bioluminescence_raw.
txt” containing three different columns of numerical values,
i.e., the time instances of measurements as well as biolumines-
cence intensities of the Bmal1-ELuc and Per1-luc reporter
constructs, respectively. The first row contains the data descrip-
tion, see Fig. 4b.

2. There are multiple ways to load such data within a Python
environment. One of the easiest is to use the loadtxt function
of Numpy:

import numpy as np

np.loadtxt("./bioluminescence_raw.txt", skiprows=1)

t, Bmal1, Per1 = Data.T

Here, the file “bioluminescence_raw.txt” has to be in the
same folder as the Python script. An alternative way is to use the
convenient read_csv function of the Pandas library which is
especially well suited for large data sets:

import pandas as pd

Data = pd.read_csv("./bioluminescence_raw.txt", sep="\t")
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t = Data["Time"].values

Bmal1 = Data["Bmal1"].values

Per1 = Data["Per1"].values

Figure 4c depicts the raw bioluminescence time series data
as measured experimentally. Note that the Bmal1-ELuc
reporter has a much brighter overall light intensity but a smaller
relative amplitude in comparison to the Per1-luc signal.

3. pyBOAT allows to detrend the raw time series signal and
compute the wavelet spectrum in a single step which we will
showcase in the next points.

Fig. 4 Detecting differential phase responses of Bmal1-ELuc and Per1-Luc clock gene reporter expression. (a)
Sketch of the mammalian circadian core clock regulatory network. (b) Illustration of the data set. (c) Raw
non-detrended Bmal1-ELuc (green) and Per1-luc (blue) bioluminescence given in relative light units (RLU;
1RLU ¼ 1000 counts per 15 s), measured via a photomultiplier tube (PMT) as previously described
[19]. Nonlinear baseline expression trends (magnitudes), determined by a sinc-filter, are depicted by a
black dotted or dashed line in case of Bmal1-ELuc or Per1-luc signals, respectively. (d) Corresponding
detrended bioluminescence signals, calculated by subtracting the trend from the original raw time series data
from panel (c). (e) Time-dependent instantaneous periods, evaluated from the maximum power ridge of the
corresponding wavelet spectrograms (data not shown). (f) Difference of the time-dependent instantaneous
Bmal1-ELuc and Per1-luc oscillation phases
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4. Define the experimentally used sampling interval of the data,
choose the corresponding time unit, set up the periods of
interest, and initialize the wavelet analyzer via:

dt = 10./60 # Experimental sampling interval in hours

periods = np.linspace(2*dt, 48, 600)

wAn = WAnalyzer(periods, dt, time_unit_label=’hours’)

5. Define a cutoff period for sinc detrending, compute the wavelet
spectra, and determine the maximum power ridge for the
Bmal1-ELuc

T_cutoff = 96 # Define cutoff period in h

B1_modulus, B1_transform = wAn.compute_spectrum(Bmal1,

T_c=T_cutoff)

B1_ridge = wAn.get_maxRidge()

and Per1-luc data

P1_modulus, P1_transform = wAn.compute_spectrum(Per1,

T_c=T_cutoff)

P1_ridge = wAn.get_maxRidge()

compare with Subheadings 3.2.3 and 3.2.4. Here, providing a
parameter T_c within the compute_spectrum function of the
wavelet analyzer allows to sinc-detrend and compute the spec-
trum within a single command. The detrended biolumines-
cence intensities of Bmal1-ELuc and Per1-luc reporters clearly
show differential dynamics of oscillatory phases, i.e., an internal
dynamical dissociation, see Fig. 4d.

6. To further quantify this effect, we depict the instantaneous
time-dependent periods from the Bmal1-ELuc and Per1-luc
reporter as accessed via

Bmal1_period = B1_ridge["periods"]

Per1_period = P1_ridge["periods"]

in Fig. 4e. It can be seen that the Bmal1-ELuc oscillation
period is slower than the Per1-luc period but then speeds up
to values smaller than those of Per1-luc. Toward the end of the
experiment, both periods approach each other again, indicating
a rather transient dynamical dissociation followed by a
subsequent resynchronization.

7. The differential period responses naturally translate into differ-
ential phase dynamics. We calculate the phase difference
between the Bmal1-ELuc and Per1-luc oscillations,
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from numpy import arctan2, sin, cos

Phasediff = arctan2( sin(P1_ridge["phase"] - B1_ridge

["phase"]), cos(P1_ridge["phase"] - B1_ridge["phase"]) )

using a distance metric that accounts for the cyclic nature of
phase variables as previously described [22]. It can be seen that
the initial large phase gap between Per1-luc and Bmal1-ELuc
oscillations evolves toward an antiphasic relationship at around
t ¼ 10d and ultimately saturates at a smaller phase difference of
about 115�, see Fig. 4f.

8. In conclusion, our wavelet-based time-frequency analysis helps
to identify complex differential dynamical features in clock
gene expression after SCN slice preparation and in vitro
culturing.

4 Notes

1. The Synthetic Signal Generator allows to simulate oscillatory
time series signals composed of the superposition of two non-
stationary oscillations (so-called “chirps”) with different period
behavior, an exponential decay as well as AR1 noise. Setting the
AR1 parameter to zero corresponds to Gaussian white noise.

2. The wavelet analysis routine of pyBOAT expects equidistant
time series sampling. Gaps in the recording can be interpolated,
as described in the next point.

3. If there is missing data (gaps) in the time series, pyBOAToffers
a simple linear interpolation in between existing data points.
See the GUI tooltip for the “Set missing values entry” for the
set of default characters encoding missing data (e.g., “NaN”)
or define your own. Note that stretches of missing data at the
beginning or end of a signal can only be interpolated to con-
stant values.

4. The sinc detrending filter as implemented in pyBOAT acts like
a step function in the period domain, i.e., period components
of a signal that are below a certain threshold or cutoff-period
are neither attenuated nor amplified while period components
above the threshold can be related with the trend of the signal.
Since the sinc filter has a nonzero roll-off in practical imple-
mentations for finite time series length, one has to carefully
choose the threshold. Here, we have chosen a cutoff period of
48 h since it is significantly above the expected oscillatory time
scale of ~24 h and thus detrending does not perturb the
oscillatory properties of the signal, while it keeps the filter
“flexible” enough to reliably remove the nonlinear baseline
trend.
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5. The choice of the mother wavelet function has a strong impact
on the outcome of the analysis regarding the absolute power
values. pyBOAT uses Morlet mother wavelets as a default
which is one of the most widely used mother wavelet and
known to fit sinusoidal-like signals well.

6. The main oscillatory component extracted via the wavelet ridge
is strongly linked to the results obtained by the Hilbert trans-
form, which is another commonly used nonstationary signal
analysis approach. The Hilbert transform however is very noise
vulnerable and generally requires a pre-smoothing of data
obtained experimentally. In addition, the phase extracted via
the Hilbert transform is different from results obtained by a
wavelet analysis as it is waveform dependent [23].

7. In order to decide on a meaningful power threshold that
divides the background noise from the signal components of
interest, one needs a good null model for the background noise
spectrum (see also Note 12). In case of a white noise null
model, the (period or frequency independent) threshold at a
95% confidence level is three [8], i.e., parts of the signal with a
wavelet power larger than this can be assumed as statistically
significant oscillations. However, the background spectrum of
biological signals can significantly deviate from the white noise
model due to correlations present. In case a reasonable null
model is missing, one can estimate an empirical background
spectrum from the experimental data itself (see also Note 12).
For the sake of consistency and reproducibility, it is important
to keep and report the same threshold for the whole analysis,
using a given experimental setup.

8. pyBOAT’s underlying mathematical analysis is based on con-
volutions, which inherently display edge effects visualized by
the cone of influence (COI). For very short signals it is possible
that the entire ridge is inside the COI. As shown in detail in
Mönke et al. [8], the phase, power, and amplitude estimates are
unreliable in these cases. However, period estimates show only
very minor deviations. As a rule of thumb, the signal should
have a length of at least three oscillations.

9. For repetitive analysis of similar data sets one can fix the default
analysis parameters (e.g., the sampling interval or cutoff
period) via the “Settings” menu entry of the main window.

10. PER2::LUC oscillations show a strong decline in amplitude
after TTX application. We have selected a relatively low sinc
filter cutoff value of 36 h that is close to the expected dominant
period of ~24 h. Thus, we have chosen a compromise between
potential mild perturbations of the main oscillatory compo-
nent (see also Note 4) and the ability to reliably detrend the
signal around the sudden jumps in oscillatory amplitude due to
TTX treatment (compare Fig. 3).
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11. Analogously to the GUI of pyBOAT one can provide two
parameters for the determination of the maximum power
ridge, i.e.,

wAn.get_maxRidge(power_thresh=10, smoothing_wsize=20)

While power_thresh gives a minimum wavelet spectrum
power for which the ridge is determined, smooting_wsize pro-
vides the window size of the Savityky-Golay filter for ridge
smoothing.

12. If it is possible to record known non-oscillatory signals within
the same experimental setting (e.g., a nuclear fluorescent
marker), pyBOAT can show the time-averaged wavelet power
distribution for the whole ensemble (Batch Processing ->
Fourier Spectra Distribution). The powers of this empirical
background spectrum allow for a good estimate of a sensitive
ridge power threshold to robustly detect oscillations. As shown
in Mönke et al. [8], the minimal power required to statistically
classify as “oscillation” is three times the background power.
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