Skip to main content

Recombinant Protein Production in Plants: A Brief Overview of Strengths and Challenges

  • Protocol
  • First Online:
Recombinant Proteins in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2480))

Abstract

The first recombinant proteins were produced in microbes and animal cells cultivated in bioreactors. These systems have become the standard for industrial-scale recombinant protein manufacturing. Later, the production of recombinant proteins was demonstrated in whole plants, which differ morphologically from cell-based systems and require completely different cultivation conditions. Over time, additional plant-based production platforms were established, including hairy roots and cell suspension cultures, which are more similar to conventional cell-based systems in terms of morphology, procedures, and equipment requirements. In this brief overview of the field, we explain why plant-based systems are becoming increasingly attractive for the production of valuable proteins with scientific and commercial applications, but also highlight the challenges that these systems must overcome to achieve more widespread industrial utilization. We discuss various laboratory protocols and approaches for the production of recombinant proteins in plants, as well as strategies to optimize yields, and the regulatory and legal framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Herrera-Estrella L, Depicker A, Van Montagu M, Schell J (1983) Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303:209–213

    Article  CAS  Google Scholar 

  2. De Block M, Herrera-Estrella L, van MCE M, Schell J, Zambryski PC (1984) Expression of foreign genes in regenerated plants and in their progeny. EMBO J 3:241681–241689

    Article  Google Scholar 

  3. Stieger M (1987) Versuche zur Integration und Expression chimärer Immunoglobuline in Pflanzen. Dissertation University of Cologne

    Google Scholar 

  4. Hiatt A, Cafferkey R, Bowdish K (1989) Production of antibodies in transgenic plants. Nature 342:76–78. https://doi.org/10.1038/342076a0

    Article  CAS  PubMed  Google Scholar 

  5. Sijmons PC, Dekker BM, Schrammeijer B, Verwoerd TC, van den Elzen PJ, Hoekema A (1990) Production of correctly processed human serum albumin in transgenic plants. Biotechnology 8:217–221. https://doi.org/10.1038/nbt0390-217

    Article  CAS  PubMed  Google Scholar 

  6. Spiegel H, Stöger E, Twyman RM, Buyel JF (2018) Current status and perspectives of the molecular farming landscape. In: Kermode AR, Jiang L (eds) Molecular farming: applications, challenges, and emerging areas. John Wiley & Sons, Inc, Hoboken, New Jersey. https://doi.org/10.1002/9781118801512

    Chapter  Google Scholar 

  7. Schillberg S, Raven N, Spiegel S, Rasche S, Buntru M (2019) Critical analysis of the commercial potential of plants for the production of recombinant proteins. Front Plant Sci 10:720. https://doi.org/10.3389/fpls.2019.00720

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schillberg S, Finnern R (2021) Plant molecular farming for the production of valuable proteins – critical evaluation of achievements and future challenges. J Plant Physiol 258-259:153359. https://doi.org/10.1016/j.jplph.2020.153359

    Article  CAS  PubMed  Google Scholar 

  9. Spiegel H, Schillberg S, Nölke G (2022) Production of recombinant proteins by agrobacterium-mediated transient expression. In: Schillberg S, Spiegel H (eds) Recombinant protein production in plants: Methods and Protocols, Methods in Molecular Biology, vol. 2480. Springer, New York. https://doi.org/10.1007/978-1-0716-2241-4_6

    Google Scholar 

  10. Peyret H, Lomonossoff GP (2022) Specific packaging of custom RNA molecules into cowpea mosaic virus-like particles. In: Schillberg S, Spiegel H (eds) Recombinant protein production in plants: Methods and Protocols, Methods in Molecular Biology, vol. 2480. Springer, New York. https://doi.org/10.1007/978-1-0716-2241-4_7

    Google Scholar 

  11. Dickmeis C, Commandeur U (2022) Advanced fusion strategies for the production of functionalized potato virus X virions. In: Schillberg S, Spiegel H (eds) Recombinant protein production in plants: Methods and Protocols, Methods in Molecular Biology, vol. 2480. Springer, New York. https://doi.org/10.1007/978-1-0716-2241-4_13

    Google Scholar 

  12. Spiegel H, Boes A, Voepel N, Beiss V, Edgue G, Rademacher R, Sack M, Schillberg S, Reimann A, Fischer R (2015) Application of a scalable plant transient gene expression platform for malaria vaccine development. Front Plant Sci 6:1169. https://doi.org/10.3389/fpls.2015.01169

    Article  PubMed  PubMed Central  Google Scholar 

  13. Capell T, Twyman RM, Armario-Najera V, Ma KCM, Schillberg S, Christou P (2020) Potential applications of plant biotechnology against SARS-CoV-2. Trends Plant Sci 25:635–643. https://doi.org/10.1016/j.tplants.2020.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rup B, Alon S, Amit-Cohen BC, Brill Almon E, Chertkoff R, Tekoah Y (2017) Immunogenicity of glycans on biotherapeutic drugs produced in plant expression systems -the taliglucerase alfa story. PLoS One 12:e0186211. https://doi.org/10.1371/journal.pone.0186211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Szeto TH, Drake PMW, Teh AYH, Falci Finardi N, Clegg AG, Paul MJ, Reljic R, Ma JKC (2022) Production of recombinant proteins in transgenic tobacco plants. In: Schillberg S, Spiegel H (eds) Recombinant protein production in plants: Methods and Protocols, Methods in Molecular Biology, vol. 2480. Springer, New York. https://doi.org/10.1007/978-1-0716-2241-4_2

  16. Kapusi E, Stoger E (2022) Molecular farming in seed crops: gene transfer into barley (Hordeum vulgare) and wheat (Triticum aestivum). In: Schillberg S, Spiegel H (eds) Recombinant protein production in plants: Methods and Protocols, Methods in Molecular Biology, vol. 2480. Springer, New York. https://doi.org/10.1007/978-1-0716-2241-4_3

    Google Scholar 

  17. Arcalís E, Pedrazzini E, Hörmann-Dietrich U, Vitale A, Stoger E (2022) Cell biology methods to study recombinant proteins in seeds. In: Schillberg S, Spiegel H (eds) Recombinant protein production in plants: Methods and Protocols, Methods in Molecular Biology, vol. 2480. Springer, New York. https://doi.org/10.1007/978-1-0716-2241-4_4

    Google Scholar 

  18. Navarre C, Chaumont F (2022) Production of recombinant glycoproteins in Nicotiana tabacum BY-2 suspension cells. In: Schillberg S, Spiegel H (eds) Recombinant protein production in plants: Methods and Protocols, Methods in Molecular Biology, vol. 2480. Springer, New York. https://doi.org/10.1007/978-1-0716-2241-4_5

    Google Scholar 

  19. Schillberg S, Raven N, Fischer R, Twyman RM, Schiermeyer A (2013) Molecular farming of pharmaceutical proteins using plant suspension cell and tissue cultures. Curr Pharm Des 19:5531–5542. https://doi.org/10.2174/1381612811319310008

    Article  CAS  PubMed  Google Scholar 

  20. Buntru M, Vogel S, Finnern R, Schillberg S (2022) Plant-based cell-free transcription and translation of recombinant proteins. In: Schillberg S, Spiegel H (eds) Recombinant protein production in plants: Methods and Protocols, Methods in Molecular Biology, vol. 2480. Springer, New York. https://doi.org/10.1007/978-1-0716-2241-4_8

    Google Scholar 

  21. González B, Vazquez-Vilar M, Sánchez-Vicente J, Orzáez D (2022) Optimization of vectors and targeting strategies including GoldenBraid and genome editing tools: GoldenBraid assembly of multiplex CRISPR/Cas12a guide RNAs for gene editing in Nicotiana benthamiana. In: Schillberg S, Spiegel H (eds) Recombinant protein production in plants: Methods and Protocols, Methods in Molecular Biology, vol. 2480. Springer, New York. https://doi.org/10.1007/978-1-0716-2241-4_12

  22. Jutras PV, Dodds I, van der Hoorn RAL (2022) A bioluminescent Agrobacterium tumefaciens for imaging bacterial metabolic activity in planta. In: Schillberg S, Spiegel H (eds) Recombinant protein production in plants: Methods and Protocols, Methods in Molecular Biology, vol. 2480. Springer, New York. https://doi.org/10.1007/978-1-0716-2241-4_15

    Google Scholar 

  23. Jansing J, Bortesi L (2022) Knockout of glycosyltransferases in Nicotiana benthamiana by genome editing to improve glycosylation of plant-produced proteins. In: Schillberg S, Spiegel H (eds) Recombinant protein production in plants: Methods and Protocols, Methods in Molecular Biology, vol. 2480. Springer, New York. https://doi.org/10.1007/978-1-0716-2241-4_14

    Google Scholar 

  24. Buyel JF (2022) Strategies for efficient and sustainable protein extraction and purification from plant tissues. In: Schillberg S, Spiegel H (eds) Recombinant protein production in plants: Methods and Protocols, Methods in Molecular Biology, vol. 2480. Springer, New York. https://doi.org/10.1007/978-1-0716-2241-4_9

    Google Scholar 

  25. Spiegel H (2022) Improving recombinant protein recovery from plant tissue using heat precipitation. In: Schillberg S, Spiegel H (eds) Recombinant protein production in plants: Methods and Protocols, Methods in Molecular Biology, vol. 2480. Springer, New York. https://doi.org/10.1007/978-1-0716-2241-4_10

    Google Scholar 

  26. Buyel JF (2022) Statistical designs to improve downstream processing. In: Schillberg S, Spiegel H (eds) Recombinant protein production in plants: Methods and Protocols, Methods in Molecular Biology, vol. 2480. Springer, New York. https://doi.org/10.1007/978-1-0716-2241-4_16

    Google Scholar 

  27. McNulty MJ, Nandi S, McDonald KA (2022) Technoeconomic modeling and simulation for plant-based manufacturing of recombinant proteins. In: Schillberg S, Spiegel H (eds) Recombinant protein production in plants: Methods and Protocols, Methods in Molecular Biology, vol. 2480. Springer, New York. https://doi.org/10.1007/978-1-0716-2241-4_11

    Google Scholar 

  28. Hundleby PAC, D’Aoust MA, Finkle C, Atkins J, Twyman RM (2022) Regulation of molecular farming products. In: Schillberg S, Spiegel H (eds) Recombinant protein production in plants: Methods and Protocols, Methods in Molecular Biology, vol. 2480. Springer, New York. https://doi.org/10.1007/978-1-0716-2241-4_17

    Google Scholar 

  29. Thangaraj H (2022) Freedom to operate analysis of molecular farming projects. In: Schillberg S, Spiegel H (eds) Recombinant protein production in plants: Methods and Protocols, Methods in Molecular Biology, vol. 2480. Springer, New York. https://doi.org/10.1007/978-1-0716-2241-4_18

    Google Scholar 

  30. Houdelet M, Galinski A, Holland T, Wenzel K, Schillberg S, Buyel J (2017) Animal component-free agrobacterium tumefaciens cultivation media for better GMP-compliance increases biomass yield and pharmaceutical protein expression in Nicotiana benthamiana. Biotechnol J 12:1600721. https://doi.org/10.1002/biot.201600721

    Article  CAS  Google Scholar 

  31. Ullisch D, Müller CA, Maibaum S, Kirchhoff J, Schiermeyer A, Schillberg S, Roberts JL, Treffenfeldt W, Büchs J (2012) Comprehensive characterization of two different Nicotiana tabacum cell lines leads to doubled GFP and HA protein production by media optimization. J Biosci Bioeng 113:242–248. https://doi.org/10.1016/j.jbiosc.2011.09.022

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Richard M Twyman for editorial assistance. The authors would like to thank the members of the Newcotiana (760331) and Pharma-Factory (774078) consortia, both funded by the EU, for stimulating discussions on the potential and challenges of plants for the production of recombinant proteins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Schillberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schillberg, S., Spiegel, H. (2022). Recombinant Protein Production in Plants: A Brief Overview of Strengths and Challenges. In: Schillberg, S., Spiegel, H. (eds) Recombinant Proteins in Plants. Methods in Molecular Biology, vol 2480. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2241-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2241-4_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2240-7

  • Online ISBN: 978-1-0716-2241-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics