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RNAIi Screening to Assess Tissue Regeneration
in Planarians

Rachel H. Roberts-Galbraith

Abstract

Over the past several decades, planarians have emerged as a powerful model system with which to study the
cellular and molecular basis of whole-body regeneration. The best studied planarians belong to freshwater
flatworm species that maintain their remarkable regenerative capacity partly through the deployment of a
population of adult pluripotent stem cells. Assessment of gene function in planarian regeneration has
primarily been achieved through RNA interference (RNAi), either through the feeding or injection of
double-stranded RNA (dsRNA). RNAI treatment of planarians has several advantages, including ease of
use, which allows for medium-throughput screens of hundreds of genes over the course of a single project.
Here, I present methods for dsRNA synthesis and RNAi feeding, as well as strategies for follow-up
assessment of both structural and functional regeneration of organ systems of planarians, with a special
emphasis on neural regeneration.

Key words Planarian, Schmidtea meditervanea, Dugesia japonica, RNAi, dsRNA synthesis, Screening,
Regeneration, Functional genomics

1 Introduction

Planarian flatworms have grown popular as a study system for
regeneration because they can regrow all cell types after nearly any
injury. Over one hundred years ago, scientists determined that
planarians can achieve whole-body regeneration starting with a
small fragment of an adult animal. More recent work, mostly
using the species Schmidtea mediterranea (Fig. la, b) and Dugesin
Japonica (see Note 1), revealed many important cellular and molec-
ular contributors to planarians’ regenerative capacity, including a
population of adult, pluripotent stem cells, and constitutive body-
wide axial polarity signaling (Fig. 1c, d; [7] and for reviews, see
[2, 3, 8]). Planarians also possess diverse tissue types, allowing
dissection of the molecular mechanisms that power structural and
functional regeneration at the level of organ systems. The planarian
body consists of: a tri-lobed intestine and a tube-shaped feeding
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Fig. 1 Introduction to planarians. (a) A live planarian is pictured with its anterior (head) toward the top of the
page. Eyespots are visible. (b) A plananan is diagrammed as pictured in a, with eyespots labeled. The pharynx
(feeding organ) is tucked inside the body of the planarian when an animal is not feeding, but the outline of the
pharynx can be faintly visible from the dorsal side. During feeding, the tube-shaped pharynx emerges from its
pouch to extend through an opening on the ventral surface of the planarian body (not shown). (¢) Planarian
stem cells are a heterogeneous population, containing both pluripotent (dark blue) and specialized (light blue,
teal) cells (reviewed in [1]). Stem cells are present throughout the planarian body, with two main exceptions.
The pharynx has no resident stem cells, and few stem cells exist in the tip of the head (anterior to the
eyespots). (d) A suite of polarity determinants regulates body patterning in the planarian (for review, see
[2, 3]). The anterior/posterior axis of polarity signaling is depicted here. Wnt ligands (e.g., Wnt1, Wnt11-1, and
Wnt11-2) are produced in the tail of the planarian. Wnt inhibitors (e.g., Notum, sFRP-1) are produced in the
head to oppose Wnt signaling. Additional signaling molecules pattern the trunk of the planarian and pattern
additional axes (e.g., dorsoventral) (for review, see [2, 3]). (e) The digestive system of the planarian is
diagrammed, with the pharynx connecting to the intestine (green), which has one anterior primary branch and
two posterior secondary branches. The intestine is composed of multiple cell types and is surrounded by
enteric muscle [4, 5]. (f) The central nervous system of the planarian is diagrammed (for review, see [6]). Two
ventral nerve cords connect with horseshoe-shaped cephalic ganglia which are also referred to as the
planarian brain. Brain branches project outward from the cephalic ganglia to the edge of the planarian head

organ called a pharynx (Fig. le); muscle cells in many orientations
throughout the body, which function to facilitate animal movement
and produce signals for body patterning; a cephalized nervous
system (Fig. 1f); osmoregulatory protonephridia; an epidermis,
much of which is ciliated and promotes movement by gliding;
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secretory organs that produce mucus; connective tissue called the
parenchyma, within which stem cells are embedded; ovaries, testes,
and other reproductive tissues; and other novel cell and tissue types
still to be explored [4]. Even within these organ systems, an
amazing degree of complexity is present. For example, the planar-
ian nervous system is composed of dozens of neural cell types and
glia, all arranged spatially within horseshoe-shaped cephalic ganglia
that connect to two ventral nerve cords (Fig. 1f, [6]). Separate
peripheral and pharyngeal nerve networks are also present.

As we have learned more about planarian regeneration and
physiology, RNA interference has emerged as the most common
tool with which to query gene function. Planarian biologists typi-
cally produce double-stranded RNA (dsRNA) either in bacteria or
in vitro. dsRNA is administered to planarians by feeding, soaking,
or injection to trigger RNAi [9-14]. This approach, often repeated
several times, depending on the RNAI paradigm, causes a reduction
in levels of the target mRNA that can range from nearly a 50%
decrease to more than a 95% decrease [15]. The RNAI effect is even
stronger in regenerated planarian tissues, which often experience a
more penetrant reduction in mRNA [16]. The ease of performing
RNAI in planarians allowed several screens of hundreds of genes
within a single project (e.g., [15, 17]). Thus, this method is a
powerful tool for medium-throughput analysis of gene function
during whole-body regeneration and in the context of replacement
of specific tissues or cell types after injury. In this chapter, I will
outline typical methods for RNAI treatment by feeding of synthetic
dsRNA in Schmidtea mediterranen. 1 will also present a range of
possible approaches for assessment of regeneration downstream
of RNAI.

Taken together, the following approaches can determine the
extent to which regeneration occurs normally after gene perturba-
tion by RNAi. dsRNA synthesis and feeding to achieve RNAI in
planarians will be an accessible strategy for studies of regeneration,
particularly those focused on whole-body regeneration, regenera-
tion of complex organ systems or tissues, and brain regeneration in
particular.

2 Materials

2.1 Template
Preparation

All solutions should be prepared with sterile, ultra-pure water, and
stored at room temperature (RT) unless otherwise stated.

1. RNase-free water (see Note 2).

2. 1 M Tris base, pH 9.5. Autoclave.

3. 10% Tween-20: 10% (v/v) Tween-20 in RNase-free water.
4. 1 M MgCl,. Autoclave.
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Fig. 2 Molecular strategy for dsRNA synthesis. (a) The pJC53.2 plasmid used for cloning upstream of dsRNA
synthesis is pictured here [18]. This plasmid is digested with Eam1105I for TA cloning of PCR products
generated from cDNA. (b) The resulting plasmids contain fragments of each gene of interest. These plasmids
are subjected to PCR using a primer that recognizes the T7 promoter sequence to create an amplified product
for each target and flanking promoters (c). The PCR products are used as a template for in vitro synthesis
reactions using T7 RNA polymerase. Each in vitro synthesis reaction generates gene-specific dSRNA (d)

35 mM MgCl,. 35 pL. 1 M MgCl, stock in 965 pL sterile water,
aliquot 100 pL per tube and store at —20 °C.
1 M ammonium sulfate. Sterile filter, aliquot 100 pL per tube

and store at —20 °C.

. Phosphoric acid (>85%).
. Hot start buffer: 500 pL. 1 M Tris, pH 9.5, 100 pL. 10% Tween-
20 in 400 pL. RNase-free water. Aliquot 200 pL per tube and

store at —20 °C.
Hot start mix: 167 pL hot start buffer, 32 pL. 1 M ammonium

sulfate, 1 pL. phosphoric acid. Made fresh or frozen only once.
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150450 ng/pL template plasmid: ~750 bp target gene cloned
from cDNA into the pJC53.2 vector. More on this vector can
be found in [18]; cloning into this vector positions T7 poly-
merase sites on each side of the gene fragment (Fig. 2a, b, see
Note 3).

dNTP mix: 10 mM dATP, 10 mM dGTP, 10 mM dCTP,
10 mM dTTP. Aliquot 100 pL and store at —20 °C.

10 pM T7 primer: extended sequence GGATCCTAATAC
GACTCACTATAGGG . Aliquot in 100 pL and store at
-20°C.

Recombinant Taq polymerase.

Kit for purification of polymerase chain reaction (PCR)
products.

Gel electrophoresis setup: 1% (w/v) agarose gel, with ethidium
bromide or equivalent, DNA ladder, loading dye,
electrophoresis tank.

Thermocycler.
Gel imager.

Spectrophotometer.

1 M Tris base, pH 8.0. Autoclave.

1 M spermidine. Filter sterilize, aliquot 500 pL per tube and
store at —20 °C.

1 M dithiothreitol (DTT). Filter sterilize, store at —20 °C.

4. 10x high yield transcription buffer: 4 mL 1 M Tris pH 8.0,

©° x® N

10.

. 5 M ammonium acetate. Prepare with RNase-free water. Sterile

12.
13.

2 mL 1 M MgCl,, 200 pL 1 M spermidine, 1 mL 1 M DTT, in
2.8 mL RNase-free water. Sterile filter, aliquot 200 pL per tube
and store at —20 °C.

rNTP mix: 25 mM rATP, 25 mM rUTP, 25 mM rCTP, 25 mM
rGTP. Aliquot 100 pL per tube and store at —20 °C.

T7 RNA polymerase.

Thermostable inorganic pyrophosphatase (TIPP) enzyme.
Ribonuclease (RNase) inhibitor (e.g., RNasin®™).
Formaldehyde loading dye.

RNase-free DNase.

filter.
100% ethanol.
70% (v/v) ethanol. Prepare with RNase-free water.
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2.3 RNAi Treatment
and Amputation

92

o % N

10.
. Low-lint science wipes.
12.
13.
14.

>1 pg/pL purified dsRNA.

Planarians—Schmidtea mediterranes. 10 animals of 3-5 mm
length per gene of interest, plus 10 animals of similar size for
negative control.

60-100 mm petri dishes.

. Cafeteria trays.
. 1x Montjuic salts: 1.6 mM NaCl, 1 mM CaCl,, 1 mM MgSOy,

0.1 mM MgCl,, 0.1 mM KCl, 1.2 mM NaHCOg3;, pH 7.5 with
HCI or NaOH.

Large bulb, wide mouth transfer pipettes (e.g., 8.6 mL).
Disposable pellet pestles.

Planarian food (e.g., liver puree prepared as per [19]).
Green food coloring.

Filter paper.

Scalpel.
Dissecting microscope.

50 mg/ml gentamicin sulfate solution.

3 Methods

3.1 Template
Preparation by PCR

The starting material for template preparation is ~750 bp of each
target gene cloned from cDNA into pJC53.2 vector (Fig. 2a, b, see
Note 3). Positive and negative controls should also be included (see
Note 4).

1.
2.

Prepare one PCR per template to be amplified (see Note 5).

Combine 5 pL of the hot start mix solution and 5 pLL of 35 mM
MgCl, in each tube.

. Incubate for 15 min at RT to precipitate the MgCl,.
. Add to each tube: 32.5 pL sterile water; 1 pL. template plasmid

diluted 1:30 in water; 4 pL. 10 pM T7 primer, which will serve
as both forward and reverse primers in this reaction; 1.5 pL.
10 mM dNTPs; 1 pL. Taq polymerase.

. Incubate the reactions in the thermocycler for the following

program: incubation for 5 min at 95 °C; 35 cycles of the
following three steps—30 s at 95 °C, 30 s at 55 °C, 1 min at
72 °C; incubation for 5 min at 72 °C; and hold at 4 °C.

. Load 1.5 pL of each reaction into an agarose gel.

. Run the gel electrophoresis setup on 120 V for 45 min.
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Synthesis
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8. Image the gel on the gel imager following the manufacturer’s
instructions to check for amplification.

9. Identify PCR products as single strong bands of 750-800 bp
(insert plus promoter sequences) (see Fig. 2¢).

10. Purify PCR products using a DNA clean-up kit, as per the
manufacturer’s protocol, except elute in 20 pL RNase-free
water (see Note 6).

11. Determine the concentration of PCR products using a
spectrophotometer.

12. Dilute with sterile water to a concentration of 50-150 ng/pL
for in vitro dsRNA synthesis.

The starting material for dsRNA synthesis is template DNA with T7
promoter sequences on each side generated in Subheading 3.1 (see
Note 7). For all steps in this section of the protocol, use RNase-free
materials, including RNase-free filter tips and RNase-free tubes.

1. For each template, combine in a 1.5-mL tube: 10.5 pL tem-
plate DNA; 2 pL 10x high yield transcription buffer; 5 pL
rNTP mix (25 mM each); 1 pLL T7 RNA polymerase; 1 pL.
TIPP; 0.5 pLL RNase inhibitor. Total volume will be 20 pL.

2. Incubate at 37 °C overnight (>5 h).

3. Add the following to each tube: 8 plL RNase-free water; 1 pL.
10x high yield transcription buffer; and 1 pl. RNase-free
DNase.

4. Mix well.
. Incubate at 37 °C for 15 min.

6. To precipitate each reaction, add the following to each tube:
70 pL RNase-free water; 100 pL 5 M ammonium acetate;
400 pL 100% ethanol.

7. Mix well by inverting.

92

8. Incubate the mixture at —20 °C for >1 h.

9. Centrifuge samples for 15 min at 4 °C and at maximum speed
(~20,000 rcf). A pellet should appear at the bottom of each
tube. The pellets should be large and glassy or white in
appearance.

10. Remove the supernatant carefully by pipetting with RNase-free
filter tips. Be careful not to disturb the pellet.

11. Discard supernatant.

12. Add 500 pL 70% ethanol to each tube (containing precipitated
dsRNA). This wash will help to remove any additional materials
from the synthesis reaction.

13. Cap and invert tubes two times to mix.
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3.3 dsRNA Feeding
for RNA Interference
(RNAI)

14.

15.
16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Centrifuge samples to pellet for 5 min at 4 °C and at maximum
speed.

Remove and discard a// supernatant from tubes by pipetting.
Allow pellets to air dry on a bench-top for 5 min, with tubes
uncapped and covered with a science wipe.

Resuspend pellets in 30 pLL RNase-free water.

Cap and flick tubes with a finger to dislodge the pellets into the
water.

Allow resuspension of pellets at RT until they are dissolved
completely.

Anneal dsRNA with the following sequence of incubations:
95 °C for 5 min; 75 °C tor 5 min; 50 °C for 5 min.

Allow to cool to RT for 5 min. The product will be well-
annealed dsRNA (Fig. 2d).

Dilute each sample 1:10 by combining 1 pL of dsRNA with
9 pL. RNase-free water.

Mix 1 pL of each 1:10 dilution with 8 pLL RNase-free water and
1 pL of loading dye.

Run out these mixtures on a 1% agarose gel with a known
volume of DNA ladder.

Image with a gel imager. Each dsRNA reaction should run as a
clear band at approximately the expected molecular weight,
with no degradation products smaller than the band. Occa-
sionally, higher molecular-weight bands will be present; these
are dsRNA with more complex secondary structure.

Using the ladder as a reference, estimate the concentration for
each dsRNA sample (see Note 8).

Once purified, dsRNA can be stored at —20 °C for up to
several months.

Determine the design for the RNAi experiment. The time course
frequently used in my laboratory is to complete three feedings every
5 days with 3-5 pg dsRNA per feeding for 10 planarians (Fig. 3a).
We wait for 7 days after the last feeding and amputate animals
pre-pharyngeally. After amputation, we wait for 7 days until observ-
ing or fixing animals for assessment of regeneration as detailed
below. Other feeding paradigms, injection paradigms, dsRNA
doses, and amputation strategies may be used (Fig. 3b-e, see
Note 9).

1.
2.

Line a cafeteria tray with paper towels to absorb spills.

For each gene of interest, half-fill one Petri dish with 1x Mon-
tjuic salts.
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Fig. 3 Paradigms for RNAI. (a) The typical strategy used in my laboratory for dSRNA feedings and amputation is
shown here. Planarians receive three feedings of dsRNA over the course of ~11 days. Pre-pharyngeal
amputation occurs approximately 1 week after the final feeding and animals are observed for head or brain
regeneration 1 week after amputation. (b) Additional amputation strategies are presented. Amputation is
indicated with a dashed line on the left image of each pair and regeneration is diagrammed in the right image
of each pair, with blastema tissue shown in a lighter color. (1) Animals can be amputated post-pharyngeally to
observe tail regeneration. (2) Sagittal amputation can be used to observe regeneration of lateral structures and
reestablishment of mediolateral patterning. (3) Chemical amputation can be used to remove the pharynx to
observe pharyngeal regeneration [20]. (4) Other excisions can be made to determine local wound responses
after minor injuries. (c) A long-term RNAi strategy with weekly dsRNA feedings can be used to determine
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10.

11.

12.

13.

14.
15.

16.

17.

A
Y

. Include dishes for positive and negative controls (sce Notes 4

and 10).

. Label both the tray and each petri dish with experimental (tray)

and sample (dish) information.

. Add planarians to each dish. A 60-mm petri dish will fit 10 asex-

ual planarians or a 100-mm deep-well petri dish can be used for
30 asexual planarians. Choose planarians that are ~5 mm long
and that have been starved for ~1 week before the experiment.
Details that follow are appropriate for experiments using
10 planarians.

. In a 1.5-mL tube, mix 100 pL 1x Montjuic salts per 400 pL

planarian food.

. Using a disposable pestle, mix the food and salts until the

combination reaches a uniform consistency.

. Pulse the tube in a centrifuge to pellet large pieces of tissue.

. For each target of interest, aliquot 3-5 pg of purified dsRNA

into a separate, labeled tube.

Add 1 pL green food coloring to each sample of dsRNA (see
Note 11).

Pipet 30 pL of food mixture into each dsRNA-containing tube
using a 200-pL pipette tip with the end cut off.

Using the same tip, stir until the food and coloring are evenly
mixed.

Using the same tip, pipet the colored food and dsRNA mixture
onto the bottom of a petri dish. The food mix should stay
together well with a paste-like consistency and should not

diffuse.
Repeat steps 9-13 for each subsequent dsRNA sample.

Cover petri dishes with lids and cover the tray with a second
tray or aluminum foil.

Allow planarians to eat for 1.5-2 h in near darkness. Planarians
should appear green under a microscope after feeding, due to
the food dye within their intestines.

Remove excess liver to a waste container using a transfer
pipette.

Fig. 3 (continued) whether genes are required for growth or tissue maintenance under homeostatic
(non-injury) conditions. (d) Frequent feeding strategies can be used to increase the efficiency of gene
knockdown by RNAi and to improve phenotype penetrance. (e) Injection strategies can be used instead of
or in addition to dsRNA feeding [13]. Though this strategy is more time-consuming, it can be especially
valuable when gene knockdown interferes with proper feeding of the planarians



3.4 Strategies for
Assessing
Regeneration
After RNAi

18.

19.
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26.
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Using Montjuic salts in a squirt bottle and a fresh transfer
pipette for each plate, wash animals gently but thoroughly
three times in the bottom of the petri dish.

Using the squirt bottle, add salts and pour to transfer the
worms to the lid of the petri dish for three more washes.

After washes, transfer the planarians to fresh, labeled petri
dishes half-filled with Montjuic salts.

Incubate planarians in the dark at a constant, cool temperature
(recommended incubation at 18 °C).

Wait for 5 days before feeding planarians.
Repeat steps 6-22 two more times to induce a robust RNAi
phenotype.

For paradigms that involve regeneration, amputation should
occur 7 days after the last feeding.

Place two-folded science wipes on a solid metal block and then
place one piece of filter paper on top of the science wipes.

Wet this setup until damp with Montjuic salts.

Place this setup under a dissecting microscope to more pre-
cisely amputate the planarians.

Using a transfer pipette with a wide tip, transfer planarians
from the petri dish onto the filter paper.

During the time in which planarians are on the filter paper,
gently spray with Montjuic salts as needed to keep
planarians damp.

For head regeneration studies, use a clean scalpel to amputate
planarians approximately 1/3 of the length of the body away
from the tip of the head. This will remove the entire brain of
the planarian (Fig. 3a).

Once all planarians from this dish are amputated, use a spray
bottle of Montjuic salts to rinse amputated pieces from the
filter paper into a fresh petri dish.

Remove any unwanted pieces.
Fill the new petri dish half-full with 1x Montjuic salts.
Repeat steps 28-33 for each petri dish in the experiment.

Add gentamicin solution 1:1000 to prevent any bacterial
growth.

Incubate planarians in the dark at a constant, cool temperature
(18 °C) for regeneration.

Performing RNAIi for 10 or more animals per sample is usually
sufficient to assess whether significant differences exist between
control and experimental RNAi-treated animals. After RNAI treat-
ment and amputation, one or more of the following approaches
may be used to assess and quantify regeneration: blastema
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Fig. 4 Assessing regeneration phenotypes. (a) Blastema size can be measured by outlining the blastema
(vellow dashed line) and measuring blastema area in ImageJ [30]. The body size can similarly be measured
(red line). By dividing blastema size by body size to normalize for variable animal size, the resulting value can
be compared across populations and RNAI treatments. (b) Similarly, | use in situ hybridization with a choline
acetyltransferase (ChAT) riboprobe [23] to stain the central nervous system for measurement of brain size
after regeneration (yellow dashed line). Brain size can also be normalized to body size (red line) for comparison
of brain regeneration across RNAI treatments. (¢) Some cell types are present in numbers low enough that they
can be accurately counted, like cells expressing glutamic acid decarboxylase (GAD) [31]. Counting these cell
types for regenerated animals following RNAi treatment would allow determination of genes that affect
regeneration of GAD™ cells. In the image shown, 34 cells are labeled (arrowheads). (d) This table lists some
available antibodies and examples of riboprobes that can be used for staining diverse cell types or organ
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measurement (see Note 12); in situ hybridization to examine spe-
cific organs or cell types ([21, 22], see Note 13); immunofluores-
cence to detect cell types or tissue regeneration ([23-29], see Note
14); reverse transcription and quantitative PCR (RT-qPCR) to
examine gene expression (see Notes 15 and 16); functional assess-
ment including behavioral assays (se¢ Note 17). Potential data from
these types of experiments are shown in Fig. 4.

4 Notes

1. This methods chapter describes the approach used in my labo-
ratory to perform RNAI using the species Schmidtea mediter-
raner. RNAI has also been used to query gene function in
other freshwater planarians including Dugesia japonica [11],
Procotyla fluviatilis[52], Phagocata kawakatsui [53], and Den-
drocoelem lactenwm [54].

2. T use diethyl pyrocarbonate (DEPC) treatment as per the man-
ufacturer’s instructions to generate RNase-free water, but it
can also be purchased directly.

3. The pJC53.2 vector was designed for TA cloning of cDNA
fragments [18] (Fig. 2a, b). Cloning is performed to ligate
PCR products amplified from ¢cDNA into pJC53.2 which has
been cut by Eam11051. This strategy positions inserts so that
they have T7 promoter sites on 5" and 3’ ends to facilitate
dsRNA synthesis. This vector also has an Sp6 promoter on
one side of the insert and a T3 promoter on the other side of
the insert. By cloning into this vector, one can use the same
cloned fragment for dsRNA synthesis and for synthesis of anti-
sense riboprobe for in situ hybridization. This vector is avail-
able from Addgene (plasmid #26536).

4. Prior to cloning, the pJC53.2 vector has two bacterial genes in
the insert region, ccdB and camR. Thus, undigested pJC53.2
can be used to synthesize a dsRNA product that does not
match planarian genes and can be used as a negative control.
In my laboratory, we also routinely use Aequoria green fluores-
cent protein (GFP) cloned into pJC53.2 as a template for a

<
Y

Fig. 4 (continued) systems [23—29, 32-51]. These approaches may be used to determine whether regenera-
tion proceeds normally after RNAI, including the shape of organs and the renewed expression of key markers.
(e—j) In situ hybridization examples are presented. These expression patterns could be used to explore
regeneration of the following cell types, structures, and organs: stem cells (smedwi-1 [32]); neurons (nAChR,
dd_Smed_v6_8058_0_1); subsets of neurons (CNG7 [15], ppp-2 [18]) including brain branches (gpas [34]);
the intestine (dd_Smed_v6_2841_0_1); muscle (mhc [39]); and protonephridia (smedinx-10 [42]). Note some
neural staining in the pharynx (arrows in f and g). smedinx-10 also stains cells in the pharynx (arrowhead in j)
and pigment cups of the eyespots (small arrow in j)
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negative control. In parallel, for a positive control, I recom-
mend that dsRNA be generated from a fragment of Smedwi-
2 or another gene for which RNAi produces a known pheno-
type. Smedwi-2(RNA7) causes lysis and death of the planarians
in a short period of time [32]. Observation of this phenotype
can help ensure that synthesis and dosage are appropriate and
consistent.

. T use a Hot Start PCR protocol for template amplification, but

these steps could be exchanged for many other PCR protocols.

. My laboratory uses Zymo Clean and Concentrator kits, but

other kits or methods for DNA purification can be substituted.
Take care to remove all ethanol during the purification of DNA
products, as it can inhibit in vitro synthesis of RNA. For some
kits, an extra drying spin after the wash steps can help to
remove extra ethanol that is present in the wash buffer.

. This protocol has been adapted from a previously published

protocol for in vitro synthesis of dSRNA [12]. In this work, the
authors also present helpful data on the effective timing and
concentration for RNAi administered by dsRNA feeding.

. Though a spectrophotometer can be used to estimate dsRNA

concentration, I find that this approach typically overestimates
the concentration of dsRNA. A falsely high spectrophotometer
reading could be caused by residual rNTPs that are precipitated
or retained during the purification steps. Determining dsRNA
concentration based on the intensity of the band leads to more
reproducible gene knockdown. For an example of this
approach, if one compares a 1:10 dsRNA band and find that
it is similar in intensity to 100 ng of the 1 kb band in the ladder,
then one can estimate that our dsRNA concentration (undi-
luted) is ~1 pg/pL.

. Here, I provide notes on experimental design for RNAI experi-

ments. Three main variables must be chosen for RNAI experi-
ments: dosage, frequency/duration of feeding, and method of
dsRNA administration (injection vs. feeding). Our main exper-
imental design is presented in the Methods section of this
chapter (Fig. 3a). This paradigm is appropriate for most screen-
ing and assessment of gene effects on regeneration. Alternative
amputation strategies to examine tail regeneration, lateral
regeneration, pharyngeal regeneration [20], or regeneration
after minor injuries are diagrammed (Fig. 3b). To observe the
effects of long-term RNAi without amputation, I typically use a
weekly feeding paradigm (Fig. 3¢). Other approaches, includ-
ing frequent feedings and injection (Fig. 3d, ¢), have been used
for successful knockdown of genes of interest (e.g., [55] for
frequent feedings, [56] for injections). Injection might be a
preferred strategy in situations where a phenotype occurs



10.

11.

12.

13.

14.

RNAIi Screening in Planarians 523

quickly or when the phenotype prevents feeding (e.g., paraly-
sis, loss of pharynx).

Here, I provide notes for setup of RNAi experiments. Though
cafeteria trays are convenient for organization, dropping a tray
can be devastating. Be careful when transporting RNAi experi-
ments and be cautious around other lab members when they
are moving trays. I prefer deep-well 100-mm petri dishes for
our bigger (30 worms) or long-term RNAi experiments o7
when I expect to use larger (1 cm) asexual planarians or sexual
planarians. For especially large worms or large RNAI experi-
ments, small Ziploc® containers may be used instead of petri
dishes. The number of planarians per dish as well as animal size
can be optimized for atypical RNAi paradigms. For example, I
start with very small (<2 mm) worms for long-term experi-
ments to avoid fissioning.

Though 3-5 pg per feeding (final concentration in liver mix of
~0.1-0.2 pg/pL) is sufficient for most of our experiments, the
range of concentrations used in the planarian field is very broad.
Concentration, as well as animal size and feeding paradigm, can
impact the penetrance and speed of RNAi phenotypes [12]. In
some experiments, I have combined knockdown of several
genes to investigate whether genes work together or oppose
one another (e.g., activin and follistatin [57]). In these experi-
ments, | standardize both concentration and total mass of
dsRNA across control, single knockdown, and double knock-
down conditions.

Animals may be killed and fixed for blastema measurement
(Fig. 4a) or observation of eyespots. Initially, regenerating
tissue is unpigmented, which allows for the newly regenerated
tissue within the blastema to be clearly observed and measured.

Animals may be killed and fixed for in situ hybridization using a
riboprobe to mark specific organs or cell types [21, 22]. This
allows one to assess the regeneration of a specific cell or tissue
type (Fig. 4b—j). For example, in situ hybridization with choline
acetyltransferase (ChAT) [23] marks cholinergic neurons and
can be used to broadly mark the brain to measure brain size
after regeneration [15] (Fig. 4b). Alternatively, with some in
situ hybridization staining (e.g., glutamic acid decarboxylnse,
GAD[31]), cells can be counted (Fig. 4c¢).

Animals may be killed and fixed for immunofluorescence
experiments to assess organ regeneration (Fig. 4d) [23-
27]. Immunofluorescence is also useful for examining proteins
that localize differently than their mRNA; for example,
smedwi-1 is present in dividing stem cells, but SMEDWI-1
protein is present in differentiating stem cells as well
[28]. Immunofluorescence can also be used to detect protein
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modifications. For example, histone H3 phosphorylated at
Serine 10 is a marker of mitotic stem cells [29].

Animals may be killed and processed to purify mRNAs for
downstream reverse transcription and quantitative PCR
(RT-qPCR). This approach can be used to determine the eftec-
tiveness of RNAi knockdown or the effect of knockdown on
other tissues using cell type-specific target genes (see Note 12,
and for one example [15]).

When choosing primers for assessment of mRNA knockdown
by RT-qPCR, it is best to choose a pair of primers that will
recognize the target mRNA but not the dsRNA that is admi-
nistered for RNAi. In some instances, the knockdown effi-
ciency has seemed poor despite a strong phenotype,
potentially due to a primer pair binding to and amplifying
fragments of cDNA generated from both mRNA and dsRNA.

Animals may be subjected to functional analyses. For example,
behavior could be assessed in a feeding assay [5, 15, 20, 58],
which could give an indication of whether neural, intestinal,
and/or pharyngeal regeneration has been achieved. Live imag-
ing to assess movement or response to stimuli (touch, light,
temperature) can indicate whether neural function and muscle
function are normal after regeneration [33, 59, 60].
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