Skip to main content

Gene Transduction of Natural Killer Cells for Clinical Application

  • Protocol
  • First Online:
Natural Killer (NK) Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2463))

Abstract

Autologous T cells expressing chimeric antigen receptor (CAR) have produced a spectacular response in hematological malignancies. This success of cellular therapy has inspired the exploration of the therapeutic potential of other immune cell types. In this regard, natural killer (NK) cells hold great potential as they can identify tumor cells by mechanisms that are different from those used by T cells and have a high cytotoxic capacity. Their capacity to recognize tumors and killing potency can be further enhanced by genetic modification. Our laboratory has developed a clinically adaptable method to manufacture genetically modified NK cells using retroviral vectors in compliance with current good manufacturing practice regulations. Here, we describe relevant technical procedures, including isolation of peripheral blood mononucleated cells from a leukapheresis product, T-cell depletion, stimulation and transduction of NK cells, and preparation of transduced NK cells for infusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, Bader P, Verneris MR, Stefanski HE, Myers GD, Qayed M, De Moerloose B, Hiramatsu H, Schlis K, Davis KL, Martin PL, Nemecek ER, Yanik GA, Peters C, Baruchel A, Boissel N, Mechinaud F, Balduzzi A, Krueger J, June CH, Levine BL, Wood P, Taran T, Leung M, Mueller KT, Zhang Y, Sen K, Lebwohl D, Pulsipher MA, Grupp SA (2018) Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 378(5):439–448. https://doi.org/10.1056/NEJMoa1709866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Park JH, Riviere I, Gonen M, Wang X, Senechal B, Curran KJ, Sauter C, Wang Y, Santomasso B, Mead E, Roshal M, Maslak P, Davila M, Brentjens RJ, Sadelain M (2018) Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med 378(5):449–459. https://doi.org/10.1056/NEJMoa1709919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schuster SJ, Svoboda J, Chong EA, Nasta SD, Mato AR, Anak Ö, Brogdon JL, Pruteanu-Malinici I, Bhoj V, Landsburg D, Wasik M, Levine BL, Lacey SF, Melenhorst JJ, Porter DL, June CH (2017) Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med 377(26):2545–2554. https://doi.org/10.1056/NEJMoa1708566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu E, Marin D, Banerjee P, Macapinlac HA, Thompson P, Basar R, Nassif Kerbauy L, Overman B, Thall P, Kaplan M, Nandivada V, Kaur I, Nunez Cortes A, Cao K, Daher M, Hosing C, Cohen EN, Kebriaei P, Mehta R, Neelapu S, Nieto Y, Wang M, Wierda W, Keating M, Champlin R, Shpall EJ, Rezvani K (2020) Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med 382(6):545–553. https://doi.org/10.1056/NEJMoa1910607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Myers JA, Miller JS (2021) Exploring the NK cell platform for cancer immunotherapy. Nat Rev Clin Oncol 18(2):85–100. https://doi.org/10.1038/s41571-020-0426-7

    Article  PubMed  Google Scholar 

  6. Huntington ND, Cursons J, Rautela J (2020) The cancer-natural killer cell immunity cycle. Nat Rev Cancer 20(8):437–454. https://doi.org/10.1038/s41568-020-0272-z

    Article  CAS  PubMed  Google Scholar 

  7. Adams GP, Weiner LM (2005) Monoclonal antibody therapy of cancer. Nat Biotechnol 23(9):1147–1157. https://doi.org/10.1038/nbt1137

    Article  CAS  PubMed  Google Scholar 

  8. Zhang M, Wen B, Anton OM, Yao Z, Dubois S, Ju W, Sato N, DiLillo DJ, Bamford RN, Ravetch JV, Waldmann TA (2018) IL-15 enhanced antibody-dependent cellular cytotoxicity mediated by NK cells and macrophages. Proc Natl Acad Sci U S A 115(46):E10915–E10924. https://doi.org/10.1073/pnas.1811615115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Federico SM, McCarville MB, Shulkin BL, Sondel PM, Hank JA, Hutson P, Meagher M, Shafer A, Ng CY, Leung W, Janssen WE, Wu J, Mao S, Brennan RC, Santana VM, Pappo AS, Furman WL (2017) A pilot trial of humanized anti-GD2 monoclonal antibody (hu14.18K322A) with chemotherapy and natural killer cells in children with recurrent/refractory neuroblastoma. Clin Cancer Res 23(21):6441–6449. https://doi.org/10.1158/1078-0432.Ccr-17-0379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee SC, Shimasaki N, Lim JSJ, Wong A, Yadav K, Yong WP, Tan LK, Koh LP, Poon MLM, Tan SH, Ow SGW, Bharwani L, Yap YS, Foo MZQ, Coustan-Smith E, Sundar R, Tan HL, Chong WQ, Kumarakulasinghe NB, Lieow JLM, Koe PJX, Goh BC, Campana D (2020) Phase I trial of expanded, activated autologous NK-cell infusions with Trastuzumab in patients with HER2-positive cancers. Clin Cancer Res 26(17):4494–4502. https://doi.org/10.1158/1078-0432.Ccr-20-0768

    Article  CAS  PubMed  Google Scholar 

  11. Imamura M, Shook D, Kamiya T, Shimasaki N, Chai SM, Coustan-Smith E, Imai C, Campana D (2014) Autonomous growth and increased cytotoxicity of natural killer cells expressing membrane-bound interleukin-15. Blood 124(7):1081–1088. https://doi.org/10.1182/blood-2014-02-556837. Epub 2014 Jul 8

    Article  CAS  PubMed  Google Scholar 

  12. Liu E, Tong Y, Dotti G, Shaim H, Savoldo B, Mukherjee M, Orange J, Wan X, Lu X, Reynolds A, Gagea M, Banerjee P, Cai R, Bdaiwi MH, Basar R, Muftuoglu M, Li L, Marin D, Wierda W, Keating M, Champlin R, Shpall E, Rezvani K (2018) Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia 32(2):520–531. https://doi.org/10.1038/leu.2017.226

    Article  CAS  PubMed  Google Scholar 

  13. Müller N, Michen S, Tietze S, Töpfer K, Schulte A, Lamszus K, Schmitz M, Schackert G, Pastan I, Temme A (2015) Engineering NK cells modified with an EGFRvIII-specific chimeric antigen receptor to overexpress CXCR4 improves immunotherapy of CXCL12/SDF-1α-secreting glioblastoma. J Immunother 38(5):197–210. https://doi.org/10.1097/cji.0000000000000082

    Article  PubMed  PubMed Central  Google Scholar 

  14. Di Stasi A, De Angelis B, Rooney CM, Zhang L, Mahendravada A, Foster AE, Heslop HE, Brenner MK, Dotti G, Savoldo B (2009) T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood 113(25):6392–6402. https://doi.org/10.1182/blood-2009-03-209650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Imai C, Iwamoto S, Campana D (2005) Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood 106(1):376–383

    Article  CAS  Google Scholar 

  16. Chang YH, Connolly J, Shimasaki N, Mimura K, Kono K, Campana D (2013) A chimeric receptor with NKG2D specificity enhances natural killer cell activation and killing of tumor cells. Cancer Res 73(6):1777–1786. https://doi.org/10.1158/0008-5472CAN-12-3558. Epub 2013 Jan 9

    Article  CAS  PubMed  Google Scholar 

  17. Kudo K, Imai C, Lorenzini P, Kamiya T, Kono K, Davidoff AM, Chng WJ, Campana D (2014) T lymphocytes expressing a CD16 signaling receptor exert antibody-dependent cancer cell killing. Cancer Res 74(1):93–103

    Article  CAS  Google Scholar 

  18. Li Y, Hermanson DL, Moriarity BS, Kaufman DS (2018) Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell 23(2):181–192.e185. https://doi.org/10.1016/j.stem.2018.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kamiya T, Seow SV, Wong D, Robinson M, Campana D (2019) Blocking expression of inhibitory receptor NKG2A overcomes tumor resistance to NK cells. J Clin Invest 129(5):2094–2106. https://doi.org/10.1172/jci123955

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shimasaki N, Campana D (2020) Engineering of natural killer cells for clinical application. Methods Mol Biol 2097:91–105. https://doi.org/10.1007/978-1-0716-0203-4_6

    Article  CAS  PubMed  Google Scholar 

  21. Shimasaki N, Fujisaki H, Cho D, Masselli M, Lockey T, Eldridge P, Leung W, Campana D (2012) A clinically adaptable method to enhance the cytotoxicity of natural killer cells against B-cell malignancies. Cytotherapy 14(7):830–840. https://doi.org/10.3109/146532492012671519. Epub 2012 Mar 29

    Article  CAS  PubMed  Google Scholar 

  22. Fujisaki H, Kakuda H, Shimasaki N, Imai C, Ma J, Lockey T, Eldridge P, Leung WH, Campana D (2009) Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. Cancer Res 69(9):4010–4017

    Article  CAS  Google Scholar 

  23. Harada H, Watanabe S, Saijo K, Ishiwata I, Ohno T (2004) A Wilms tumor cell line, HFWT, can greatly stimulate proliferation of CD56+ human natural killer cells and their novel precursors in blood mononuclear cells. Exp Hematol 32(7):614–621. https://doi.org/10.1016/j.exphem.2004.03.011

    Article  PubMed  Google Scholar 

  24. Berg M, Lundqvist A, McCoy P Jr, Samsel L, Fan Y, Tawab A, Childs R (2009) Clinical-grade ex vivo-expanded human natural killer cells up-regulate activating receptors and death receptor ligands and have enhanced cytolytic activity against tumor cells. Cytotherapy 11(3):341–355. https://doi.org/10.1080/14653240902807034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Granzin M, Stojanovic A, Miller M, Childs R, Huppert V, Cerwenka A (2016) Highly efficient IL-21 and feeder cell-driven ex vivo expansion of human NK cells with therapeutic activity in a xenograft mouse model of melanoma. Onco Targets Ther 5(9):e1219007. https://doi.org/10.1080/2162402x.2016.1219007

    Article  Google Scholar 

  26. Angelo LS, Banerjee PP, Monaco-Shawver L, Rosen JB, Makedonas G, Forbes LR, Mace EM, Orange JS (2015) Practical NK cell phenotyping and variability in healthy adults. Immunol Res 62(3):341–356. https://doi.org/10.1007/s12026-015-8664-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hank JA, Surfus J, Gan J, Albertini M, Lindstrom M, Schiller JH, Hotton KM, Khorsand M, Sondel PM (1999) Distinct clinical and laboratory activity of two recombinant interleukin-2 preparations. Clin Cancer Res 5(2):281–289

    CAS  PubMed  Google Scholar 

  28. Müller S, Schulz A, Reiss U, Schwarz K, Schreiner T, Wiesneth M, Debatin KM, Friedrich W (1999) Definition of a critical T cell threshold for prevention of GVHD after HLA non-identical PBPC transplantation in children. Bone Marrow Transplant 24(6):575–581. https://doi.org/10.1038/sj.bmt.1701970

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Prof. Dario Campana for his helpful suggestions for the process and comments on this chapter. I thank Liza Ho, Michelle Ng, Hilary Mock, and Huai Hui Wong for their expert assistance in the establishment of this method for genetically modified NK cells. This work was supported by the GOH Foundation Advanced Cellular Therapy Research and Education Programme and Children’s Cancer Foundation (CCF).

Conflict of interest: NS is a co-inventor in patent applications describing some of the technologies used or related technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriko Shimasaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shimasaki, N. (2022). Gene Transduction of Natural Killer Cells for Clinical Application. In: Shimasaki, N. (eds) Natural Killer (NK) Cells. Methods in Molecular Biology, vol 2463. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2160-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2160-8_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2159-2

  • Online ISBN: 978-1-0716-2160-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics