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Abstract

High-throughput sequencing of adaptive immune receptor repertoires (AIRR, i.e., IG and TR) has
revolutionized the ability to carry out large-scale experiments to study the adaptive immune response.
Since the method was first introduced in 2009, AIRR sequencing (AIRR-Seq) has been applied to survey
the immune state of individuals, identify antigen-specific or immune-state-associated signatures of immune
responses, study the development of the antibody immune response, and guide the development of vaccines
and antibody therapies. Recent advancements in the technology include sequencing at the single-cell level
and in parallel with gene expression, which allows the introduction of multi-omics approaches to under-
stand in detail the adaptive immune response. Analyzing AIRR-seq data can prove challenging even with
high-quality sequencing, in part due to the many steps involved and the need to parameterize each step. In
this chapter, we outline key factors to consider when preprocessing raw AIRR-Seq data and annotating the
genetic origins of the rearranged receptors. We also highlight a number of common difficulties with
common AIRR-seq data processing and provide strategies to address them.
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1 Introduction

Once an Adaptive Immune Receptor Repertoire sequencing
(AIRR-seq, please see the AIRR Community glossary at doi:
https://doi.org/10.5281/zenodo.5095381 for definitions of key
terms) experiment has been successfully designed and carried out
(see discussion in the Chap. 15, attention turns to analyzing the
data collected to produce biological insights. Many of the same
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factors that influenced choices in experimental design will be
important in planning the computational approach as well. AIRR-
seq data to be analyzed may have been generated from genomic
DNA or mRNA, with or without unique molecular identifiers
(UMIs), and in bulk or single-cell context, as described in the
Chap. 15. Each of these alternatives may require (or preclude) the
use of certain software tools and influence the interpretation of the
analysis. In addition, thought must be given to what computational
and storage resources will be necessary given the size of the dataset
and the intended analysis.

A clear first decision point in AIRR-seq data analysis is whether
IG or TR repertoires are being analyzed (Fig. 1). While many tools
such as MiXCR [1], IMGT [2], and others (Table 1) can handle
both types of data, some are specific to one or the other. In
addition, interest in specialized inquiries like phylogenetic analysis
of IGs or calculation of clonal dynamics may require additional
specific tools. In such a case, it may be useful to work within a
particular ecosystem like Immcantation (http://immcantation.
org), VDJServer [18], or SONAR [12], which provide several
tools for a thorough analysis from quality control to clonal analysis,
to facilitate smooth workflows.

The most critical set of considerations revolve around the
origins of the molecules that were actually loaded into the
sequencer (see Chap. 15). They may have been initially amplified
from genomic DNA or from mRNA; the former results in exactly

Fig. 1 AIRR-seq decision points. The different ways an AIRR-seq experiment can be constructed. Each choice
has implications both for the experimental methodology and for the design of an appropriate analysis strategy
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Table 1
Software tools

Software Notes/description URL

Preprocessing

Change-O Data standardization, germline
reconstruction, and clonal
assignment. Part of the
Immcantation suite

https://changeo.readthedocs.io/en/
stable/

[3]

pRESTO Raw data processing. All
Immcantation suite tools are
certified as compliant with AIRR
community software guidelines

https://presto.readthedocs.io/en/
stable/

[4]

TraCeR Extracts and reconstructs rearranged
TRs from short read RNA-seq data.
Does not support AIRR data
representations

https://github.com/Teichlab/
tracer/

[5]

VDJPipe High-performance raw data
preprocessing

https://bitbucket.org/vdjserver/
vdj_pipe/src/master/

[6]

Gene annotation

Cell ranger Proprietary software from 10x
genomics for processing AIRR-seq
and transcriptomic data generated
from the 10� chromium controller

https://support.10xgenomics.com/
single-cell-gene-expression/
software/pipelines/latest/what-is-
cell-ranger/

Decombinator Analysis of TR sequences https://github.com/innate2
adaptive/Decombinator/

[7]

IMGT/high
V-QUEST

Free (with registration) access to
computational resources to run
IMGT/V-quest on up to
1,000,000 sequences at once

http://www.imgt.org/HighV-
QUEST/login.action

[8]

IMGT/V-
QUEST

Proprietary web tool for annotating
IG and TR sequences

http://www.imgt.org/IMGT_
vquest/vquest/

[2]

IMSEQ Error-aware tool for high-throughput
AIRR-seq data analysis. Does not
support AIRR data representations

http://www.imtools.org [9]

IgBLAST BLAST-based identification of IG and
TR V genes. Available as both a web
interface and a downloadable tool

https://www.ncbi.nlm.nih.gov/
igblast/

[10]

MiXCR Universal tool for annotating and
analyzing AIRR-seq data

https://mixcr.readthedocs.io/en/
master/

[1]

Partis Hidden Markov model-based
framework for annotating IG and
TR sequences

https://github.com/psathyrella/
partis/

[11]

(continued)
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one initial copy of each productive V(D)J rearrangement in a cell,
while the latter starts with several or many copies and may vary with
cell type and activation state. When amplifying mRNA, the initial
molecules may also be labeled with UMIs, which enable the correc-
tion of errors introduced by PCR and/or sequencing by identifying
reads that are derived from the same original molecule. Of note,
while the usage of UMIs enables experimental error correction,
their usage necessitates a considerably larger sequencing depth
due to consensus read building (for a more nuanced discussion,
see, e.g., [20, 21]). UMIs may also be used when sequencing DNA,
but that is currently less common in practice. UMIs can also be
used to improve quantification, by collapsing apparent expansions
due to differential amplification. Some specialized UMI protocols
may also require particular matched software tools to fully utilize
the advantages of those schemes [22]. Without UMIs, it is advis-
able to cluster highly similar reads to avoid overcounting, particu-
larly for IG sequences, where errors and somatic hypermutation
(SHM) are often indistinguishable.

Table 1
(continued)

Software Notes/description URL

SONAR BLAST-based with custom wrappers,
for IG sequences only. SONAR is
certified as compliant with AIRR
Community software guidelines

https://github.com/scharch/
SONAR/

[12]

Vidjil Available as both a web interface and a
downloadable tool

http://www.vidjil.org [13, 14]

Gene inference

TIgGER Identifies novel alleles based on the
intercept of the linear fit. Part of the
Immcantation suite

https://tigger.readthedocs.io/en/
stable/

[15]

Partis Identifies novel alleles based on the
intercept of the linear fit. Part of the
Immcantation suite

https://github.com/psathyrella/
partis/

[16]

IgDiscover Identifies alleles present by iterative
clustering

http://docs.igdiscover.se/en/
stable/

[17]

Preprocessing, annotation, and analysis environments

VDJServer A free, scalable resource for
performing immune repertoire
analysis and sharing data

https://vdjserver.org [18]

ImmuneDB Database and analysis tool for large
amounts of AIRR-seq data

https://immunedb.readthedocs.io/
en/latest/

[19]
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It is also important to think about how molecules from the full
repertoire get included into the pool to be amplified for sequenc-
ing. For mRNA-derived libraries, in particular, the efficiency of
cDNA generation can be a significant bottleneck and may vary
depending on the enzymes and protocol used in the reverse tran-
scription (RT) reaction [23, 24]. The efficiency of the RT reaction
can lead to a bias toward abundant species in the repertoire and
concomitant dropout of rare ones. In addition, because of the
diversity of V and J genes and their surrounding genetic context,
many protocols use pools of primers to capture the full repertoire
[25]. However, these primers may have different efficiencies in
amplifying their respective targets, and some genes might be tar-
geted by more than one primer in a pool. Other protocols circum-
vent this problem by adding 50 anchors during reverse transcription
[26]. In addition, IGs with high SHM can lose their ability to bind
to an intended primer, resulting in the depletion of these sequences
from the measured repertoire.

Recently, several high-throughput technologies have become
popular for conducting AIRR-seq at single-cell resolution. These
provide the most accurate, direct measurements of repertoire sta-
tistics and allow more biologically accurate definitions of clones. To
do so, however, requires analysis tools that are capable of keeping
heavy/light, alpha/beta, or gamma/delta chain sequences linked.
The AIRR Community [27] (https://www.antibodysociety.org/
the-airr-community/) is developing standardized representations
for “receptors” and “cells” to facilitate these analyses and ensure
data portability. In addition, single-cell IG and TR data can be
easily linked to transcriptomic and other measurements for more
comprehensive analyses.

The sequencing technology used must also be taken into
account. Illumina paired-end sequencing requires an additional
preprocessing step to reassemble the amplicon, and this may result
in a bias against longer sequences, with less overlap between the
two reads. Meanwhile, more error-prone long-read technologies
require extra attention to quality control.

This chapter aims to guide bioinformaticians through the first
steps in repertoire analysis, specifically the considerations and prep-
aration of raw data for subsequent repertoire analysis (see Chap.
17). Firstly, this chapter provides in-depth information on the
materials necessary to conduct the analysis, including computa-
tional resources for data preparation, available software tools, and
germline database information (Fig. 2). The main portion of the
chapter then discusses the considerations on data preprocessing and
annotation of raw sequences with a reference germline database.
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2 Materials

2.1 Computing

Resources

AIRR-seq data are usually large and require specialized analysis
methods and software tools. A typical Illumina MiSeq sequencing
run generates 20–30 million 2� 300 bp paired-end sequence reads
which roughly corresponds to 15 GB of sequence data to be
processed. Other platforms like NextSeq, which is useful in projects
where the full V gene is not needed, creates about 400 million
2� 150 bp paired-end reads. Because of the size of the datasets, the
analysis can be computationally expensive, particularly the early
analysis steps like preprocessing and gene annotation that process
the majority of the sequence data. A standard desktop PC may take
3–5 days of constant processing for a single MiSeq run, so dedi-
cated high-performance computational resources may be required.
The institution may provide a cluster with high-performance com-
puters for running analysis jobs. Commercial services like Amazon
Web Services or Google Cloud can provide access to compute
resources. However, this may come at added costs and could
carry with them privacy concerns. Alternatively, there are free com-
puting resources available. For AIRR-seq data, VDJServer provides
free access to high-performance computing at the Texas Advanced
Computing Center (TACC) through a graphical user interface

Fig. 2 Process overview. Conceptual steps in designing an AIRR-seq analysis, proceeding from raw inputs to
annotated sequences for downstream analysis
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[18]. VDJServer has also parallelized execution for tools such as
IgBLAST, so more compute resources are utilized as the size of the
input data grows. Analysis that takes days on a desktop PC might
take only a few hours on VDJServer. An example workflow is
provided in the AIRR Community Chap. 22 with instructions
about using VDJServer for immune repertoire analysis.

2.2 Software Tools Many tools are available for the first steps in AIRR-seq analysis [28–
31]. Table 1 highlights several of the more commonly used pro-
grams. These are noted particularly because they support standar-
dized AIRR data representations and are mostly free and open
source, two key criteria among the AIRR software guidelines
(https://docs.airr-community.org/en/stable/swtools/airr_
swtools_standard.html). When deciding what are the right software
tools to analyze data, besides computational requirements and
expertise of the user, we recommend taking into consideration
whether these tools use the AIRR Community standards and are
AIRR-compliant. Tools that use the standard can easily be
incorporated into complex workflows with other tools that share
the same data format. Selecting AIRR-compliant software adds an
additional layer of transparency to the analysis, because the source
code is (1) available for inspection on a publicly available repository,
(2) uses a versioning system, (3) has been tested, and (4) is available
as a container (Docker, Singularity), among other quality require-
ments. The use of AIRR standards and of AIRR-compliant software
supports the transparency, reproducibility, and rigor of research
results.

2.3 Germline

Databases

IG and TR germline databases are a requirement for accurate
AIRR-seq analyses, regardless of the technique used (e.g., single
cell vs. bulk). These databases guide the assignment of sequences to
known and novel IG and TR genes/alleles, facilitating downstream
sequence annotation and the accurate assessment of various reper-
toire features (e.g., gene/allele usage, SHM, clonal assignment,
etc.; see AIRR Community Chaps. 18–20 for more detail). A
germline database should ideally contain the most comprehensive
and accurate set of possible IG/TR V, D, and J genes and alleles
that best represent the genomic content of an organism. There are
various sources of reference germline databases available, and occa-
sionally a tool is limited by which database can be used for a
particular analysis. Thus, the use of a particular database, or a
combination of databases, may vary depending on the experimental
objectives, as well as the particular species in which the AIRR-seq
data has been generated. We therefore recommend investing effort
in obtaining as accurate a database as possible. Table 2 describes
currently available databases, focusing on those that are in active
development.
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IMGT [2] provides the most commonly used reference
genome databases, but even for species of substantial research
interest, these do not represent species diversity and can contain
sequences reported in error [35, 36]. For TR genes and for IG
genes from nonhuman species, however, few or no satisfactory
alternatives exist. Ongoing initiatives seek to remedy this by con-
tinuously improving germline databases across species. Several pro-
grams are available to infer personalized databases from AIRR-seq
data for each experimental subject (Table 1). VDJbase (https://
www.vdjbase.org) is a resource that brings together AIRR-seq and
genomic information to study population diversity and identify
previously unreported alleles [34]. In 2019, the AIRR Community
established the IARC (Inferred Allele Review Committee) to eval-
uate, document, and name human IGH alleles inferred from AIRR-
seq data [37], and it is anticipated that this approach will be
extended to other species and loci over time: The IARC’s work is
supported and published by OGRDB (the Open Germline Recep-
tor Database, https://ogrdb.airr-community.org), which provides
full information regarding alleles, metadata on the repertoires from
which they originated, and ref. 32.

Table 2
Germline reference databases

Database Description Website

Open Germline
Receptor
Database
(OGRDB)

Curated high-quality alleles inferred from
AIRR-seq data. Currently only human
IG

https://ogrdb.airr-community.
org

[32]

IMGT/GENE-
DB

IG and TR for a wide range of species http://www.imgt.org/vquest/
refseqh.html

[33]

10X Genomics
Germline
Reference
database

Human and mouse IG and TR, derived
from Ensembl

https://support.10xgenomics.
com/single-cell-vdj/
software/downloads/latest

MiXCR built-in
reference

Human and mouse IG and TR; rat TR
only, derived from Genbank

https://github.com/repseqio/
library/

[1]

VDJBase Genotype and haplotype data inferred
from human AIRR-seq datasets.
Currently IG only, planned expansion
to other species and loci in 2021

https://www.vdjbase.org [34]
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3 Methods

Preprocessing and gene annotation of AIRR-seq data takes as input
the sequencing files and returns a set of high-quality sequences for
which V, D, and J allele calls can be made and structural elements
can be identified. After further quality control filtering steps, a final
set of sequences is selected and can be used to carry out more
in-depth analyses (see Chap. 17). All steps should be carefully
documented to maintain data provenance and allow the analysis
to be reproduced; the AIRR Community has defined a set of
MiAIRR data processing fields to standardize the representation
of analysis steps [38]. Below, we outline the concepts involved in
each phase of analysis and then supply detailed protocols, applying
them to common use cases. We also provide further information on
reporting and sharing AIRR-seq data.

3.1 Preprocessing While there are several experimental technologies available for
AIRR-seq studies from different experimental setups, most
approaches typically produce the same raw data file format (.fastq)
and share the ultimate goal of obtaining a final set of reads of high
quality, particularly in the complementarity-determining region
3 (CDR3) region, representative of each B or T cell in the reper-
toire. The general steps that need to be performed include (1) fil-
tering reads (e.g., removing PhiX spike-ins, short reads, and reads
with a low Phred score or excessive ambiguous base calls), (2) iden-
tifying and removing primers and sequencing barcodes (if present),
(3) building consensus sequences (using UMI or cell barcodes, if
present), (4) merging mate pairs (if using a paired-end protocol),
(5) masking low-quality positions, (6) annotating with constant
(C) region (if present), and (7) collapsing duplicate sequences.
For some of these steps, some considerations and adjustments
need to be made depending on whether the data are from genomic
DNA or RNA, B cells or T cells; bulk or single cell, paired or
unpaired chains, and whether UMIs have been used (Fig. 1).

In the following we describe the important considerations to be
made when preprocessing AIRR-seq samples.

3.1.1 Filtering by

Sequence or by Clone

Current NGS methods introduce occasional base-call errors which
may not be detectable from the associated quality scores. A com-
mon approach to avoid incorporating these sequences in down-
stream analyses is to threshold data based on the frequency of reads.
This does not eliminate such errors but can reduce their influence
on gross metrics of the underlying immune repertoire. To remove
spurious sequences, a common approach taken, e.g., byMiXCR [1]
and SONAR [12], is to collapse identical or near-identical
sequences and drop those with fewer than a specified number of
reads (usually two or three). This approach is preferred where
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individual sequences may be of low quality, for instance, if sequenc-
ing depth is low. However, this approach to filtering can result in
nonuniform loss of data when libraries of different sequencing
depths are compared. Alternatively, instead of a preprocessing
step, all sequences passing quality control checks can be grouped
into clones using the regular workflows described in the AIRR
Community method Chaps. 18 and 19, and then clones that
include fewer than the specified number of unique sequences are
removed prior to downstream analysis. This may be appropriate for
high-quality sequences, such as with UMIs and sufficient sequenc-
ing depth for robust error correction. Without this correction,
errors in the CDR3 can lead to the inference of spurious clones.

3.1.2 Read Length-

Related Effects

Long paired-end reads provide useful information for reliable V
gene assignment as well as more comprehensive mapping of SHM
in the case of IG gene rearrangements [39]. As read length
increases, the quality of base calls degrades as sequences are gener-
ated, but paired-end sequencing allows for computational align-
ment of the overlapping regions. After alignment, sequencing
errors at the ends of the sequences can be reduced as the higher-
quality base call for each position that overlaps can be used. How-
ever, for longer sequences such as with RNA libraries capturing the
constant region, the read length on the sequencer may need to be
increased, reducing the overlapping portion of the 50 and 30 reads,
resulting in a bias against sequences encoding longer CDR3. Fur-
ther complicating this issue, a common procedure is to trim the
ends of reads of low-quality stretches of base calls, such as with
generic tools like fastx-toolkit or pRESTO’s FilterSeq trimq-
ual [4]. This can in turn reduce the number of full-length high-
quality sequences. On the other hand, with RNA-based sequenc-
ing, UMIs can be incorporated at the cDNA synthesis step, and,
when coupled with very deep sequencing, these can be used for
error correction through the construction of consensus sequences
that share the same UMI. There is, however, a trade-off between
the sequencing depth required for adequate coverage of UMIs and
the number of independent sequences that can be sampled.

Long reads covering the entire variable region can also be
generated using alternative sequencing platforms, such as those
offered by Pacific Biosciences and Ion Torrent [31, 40–
43]. These offer the additional advantage of being able to capture
large enough parts of the C-region to be able to distinguish
between subtypes of IgG. However, lower throughput on these
platforms limits the depth of sampling that can be achieved.

Short reads are sometimes used to generate large quantities of
data on CDR3 sequences, as sequencing short reads can be done on
higher-throughput sequencers at lower cost. This strategy is partic-
ularly common for TR rearrangement analysis on gDNA using
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commercial platforms such as Adaptive. Short reads may be
required if the template is of low quality, as sometimes occurs in
formalin-fixed paraffin-embedded samples. Short reads can some-
times compromise TRBV gene assignments but are particularly
problematic for IGH gene rearrangements with SHM. Short
IGHV gene sequences result in larger numbers of ambiguous V
gene assignments which can cause erroneous clustering of unre-
lated sequences into clones.

gDNA vs. mRNA templates. When using genomic DNA as
starting material, each cell contributes a fixed number of IG or
TR template, providing a parsimonious and cost-effective means
of profiling large numbers of cells. gDNA-based sequencing will
also capture far more nonproductive gene rearrangements than
mRNA-based sequencing. With RNA, nonproductive rearrange-
ments are subjected to nonsense-mediated degradation (although
some nonproductive rearrangements can be recovered). gDNA is
also more stable than RNA. On the other hand, RNA-based
sequencing is more sensitive, with more templates per cell. With
mRNA-based sequencing, cells contribute different numbers of
templates, based upon cell subset-specific differences in transcript
abundance. With mRNA-based libraries, cells can be grouped into
subsets using immunophenotyping or single-cell RNA-seq to con-
trol for these differences. In the case of IG data where primers can
be designed to capture the C-regions, each read can be annotated
with its isotype using, for example, pRESTO’s MaskPrimers rou-
tine. Further, unlike gDNA, it is straightforward to incorporate
uniquemolecular identifiers (UMIs) at the RNA to cDNA synthesis
step. Each UMI, which should be unique to original individual
cDNA templates, can be processed with pRESTO’s BuildCon-
sensus to generate consensus sequences which can nearly elimi-
nate sequencing error given sufficient sequencing depth
[44, 45]. MiXCR, SONAR, and other packages also offer similar
tools. The necessary depth might be difficult to achieve, though,
for instance, in cases of vastly different expression levels or with
samples of large size.

3.1.3 Productive Vs.

Nonproductive

Rearrangements

For each sample, the fraction of productive rearrangements can be
an informative metric. On average, it can be expected that approxi-
mately 80% of TRB rearrangements and approximately 85% of IGH
rearrangements sequenced frommature Tor B cells will be produc-
tive [46]. Lower frequencies of productive rearrangements can be
observed in immature lymphocytes, where selection has not yet
been imposed on cells without productive rearrangements
[47]. Lower frequencies of productive rearrangements can also be
seen in sequencing libraries that are of poor quality. Nonproductive
sequences also can be used as a baseline estimator of gene usage
frequency in rearrangement [48, 49] and compared to productive
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sequences to investigate the effects of tolerance checkpoints on the
AIRR [50, 51]. With such comparisons, it may be useful to remove
clonal lineages that contain both productive and nonproductive
versions of the same rearrangement, as sequencing errors can
cause a sequence to appear nonproductive. Nonproductive rearran-
gements are sometimes also useful for identifying clonal expansions
in tumors, particularly if tumors harbor SHM that may interfere
with primer binding (the nonproductive rearrangements are usually
un-mutated). Nonproductive rearrangements can be found in lym-
phocytes that have undergone multiple rounds of V(D)J recombi-
nation, as can occur with receptor editing; the presence of more
than one rearrangement is particularly common with IG light
chains [52, 53]. Finally, it is important to computationally filter
nonproductive sequences for general analyses, if one is making
claims about selected repertoires.

3.2 Gene Annotation After preprocessing AIRR sequences for good-quality and relevant
reads, sequences need to be accurately aligned and annotated to an
appropriate reference germline database. This process identifies
the V, D, and J genes; CDRs; and framework regions (FWRs) for
each sequence in the repertoire. There are numerous annotation
tools for IG and TR sequences that are freely available to users,
including popular programs such as IgBLAST [10] and IMGT/
HighV-QUEST (Table 1) [8]. Depending on the tools, different
tool-specific algorithms (e.g., Smith-Waterman) assign the best
match among a set of genes in a user-defined reference germline
database. Accurate alignment is very important for subsequent
analyses such as the identification of SHM for IGs, clustering of
clonal groups, and determination of IG/TR diversity. Alignment
algorithms have been demonstrated to influence the outcome of V,
D, and J gene assignments, even when identical input sequences,
tool parameters, and reference germline databases are chosen
[31]. Furthermore, differences in the length of alleles of genes in
databases may force algorithms to output an incorrect best match in
the gene annotation process. To complicate matters, some tools
provide alignments to multiple (often highly similar) genes and
leave it to users to choose which of the ambiguous calls is most
appropriate.

Schemes for IGs and TRs that number amino acid residues
facilitate sequence comparisons, protein structure modelling, and
engineering [54]. Althoughmany schemes have been proposed and
different schemes are employed by different tools, only five schemes
are commonly used. Three are specifically for IGs: Kabat [55],
Chothia [56], and enhanced Chothia [57]. Two more can be
used for both IGs and TRs: IMGT [58] and AHo [59]. Conversion
tables and tools like ANARCI [60] can be used to translate between
schemes. CDR boundaries can differ substantially between differ-
ent numbering schemes: care is needed when comparing results
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from different studies [54]. In repertoire studies, the IMGT num-
bering scheme is widely used and supported, and its use is recom-
mended in the absence of other considerations.

One more barrier to direct comparison is the identification in
some studies and tools of the “junction” and in others of the
CDR3. In IMGT terminology, the junction includes the second
conserved cysteine of the V gene and the conserved tryptophan or
phenylalanine of the J gene, while the CDR3 omits these residues.
The AIRR Community data representation standard uses “junc-
tion”; however, it is not universally accepted [31].

Accurate annotation requires an accurate and comprehensive
germline database. As noted above, even the currently available
human database does not as yet meet this criterion [15, 61], and
databases for other species are often partial and based solely on the
analysis of a single animal [36, 62–65]. Fortunately, scientific need
has resulted in the determination of new germline gene sets
[36, 40, 66, 67], but these are not necessarily implemented by
public germline gene databases in a timely fashion. The impact of
missing or incorrect information in the database will depend upon
the nature of the analysis, but one overall point to note is that the
databases are updated frequently, and changes in the database can
impact results [31]. It is therefore important that an analysis is
conducted using a single, consistent, and up-to-date version of
the database and that the version (or download date) is recorded
for reproducibility. Germline databases are sometimes installed
automatically with annotation tools: where that is the case,
researchers should check if the installed version meets these
requirements, and update it if necessary.

In a repertoire from a single individual, although structural
variation and gene duplication give rise to frequent exceptions, we
would expect to see a maximum of two alleles of most germline
receptor genes: one from the paternal and one from the maternal
chromosome. When used with an extensive germline database,
annotation tools that are based on sequence similarity tend to call
a biologically implausible number of alleles in B-cell repertoires,
particularly in repertoires that are highly mutated, and will make a
large number of indeterminate calls, where the tool would be
unable to determine the likely germline allele unambiguously.
Tools are available that will improve allele calls by using probabilis-
tic methods to infer the individual’s “personalized” germline set:
such tools can also infer the presence of alleles in the individual that
were not listed in the annotation tool’s germline database [15–17,
68, 69]. While the use of a comprehensive germline database is
important in the first instance, the determination of a personalized
germline set and re-annotation with just that set is recommended
where allele assignment is important: for example, when clonal
inference is employed: personalization can also compensate to
some extent for deficiencies in the germline database.
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The decision of which annotation tool to use is also dependent
on the computer skill set of the user. IMGT/HIGHV-QUEST and
IgBLAST provide easy-to-use web platforms, suited for researchers
that prefer to access a graphic user interface. Other tools, such as
the stand-alone version of IgBLAST [10], MiXCR [1], and partis
[11], require additional computer expertise, because they need to
be installed and are used in the terminal. The advantage of such
tools is that they provide more flexibility and can be integrated in
automated workflows.

4 Conclusion

In this chapter, we present important considerations involved in the
first steps in the preparation of raw data after sequencing and guide
bioinformaticians in choosing the appropriate parameters for pre-
processing and annotation. These first steps are required for the
subsequent repertoire analysis, described in the Chap. 17, as
choices made in these first steps have serious implications for the
types of data analyses that can be performed and for the accuracy of
the results. After the completion of this chapter, the bioinformati-
cian is now ready to begin the in-depth analysis of repertoire
features specific to the question at hand.
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58. Lefranc M-P, Pommié C, Ruiz M, Giudicelli V,
Foulquier E, Truong L et al (2003) IMGT
unique numbering for immunoglobulin and T
cell receptor variable domains and Ig superfam-
ily V-like domains. Dev Comp Immunol 27:
55–77. https://doi.org/10.1016/s0145-
305x(02)00039-3

59. Honegger A, Plückthun A (2001) Yet another
numbering scheme for immunoglobulin vari-
able domains: an automatic modeling and anal-
ysis tool. J Mol Biol 309:657–670. https://doi.
org/10.1006/jmbi.2001.4662

60. Dunbar J, Deane CM (2016) ANARCI: anti-
gen receptor numbering and receptor classifi-
cation. Bioinformatics 32:298–300. https://
doi.org/10.1093/bioinformatics/btv552

61. Watson CT, Breden F (2012) The immuno-
globulin heavy chain locus: genetic variation,
missing data, and implications for human dis-
ease. Genes Immun 13:363–373. https://doi.
org/10.1038/gene.2012.12

62. Ramesh A, Darko S, Hua A, Overman G,
Ransier A, Francica JR et al (2017) Structure
and diversity of the rhesus macaque immuno-
globulin loci through multiple de novo
genome assemblies. Front Immunol 8:1407.
https://doi.org/10.3389/fimmu.2017.
01407

63. Cirelli KM, Carnathan DG, Nogal B, Martin
JT, Rodriguez OL, Upadhyay AA et al (2019)

Preparation of AIRR-Seq Data for Analysis 295

https://doi.org/10.1016/j.plabm.2020.e00191
https://doi.org/10.1016/j.plabm.2020.e00191
https://doi.org/10.1073/pnas.1105422108
https://doi.org/10.1073/pnas.1105422108
https://doi.org/10.1038/nmeth.2960
https://doi.org/10.1038/nmeth.2960
https://doi.org/10.1038/ncomms11112
https://doi.org/10.1038/ncomms11112
https://doi.org/10.4049/jimmunol.1100207
https://doi.org/10.4049/jimmunol.1100207
https://doi.org/10.1038/s41467-018-02832-w
https://doi.org/10.1038/s41467-018-02832-w
https://doi.org/10.1093/bioinformatics/btz035
https://doi.org/10.1093/bioinformatics/btz035
https://doi.org/10.1098/rstb.2014.0243
https://doi.org/10.1098/rstb.2014.0243
https://doi.org/10.1371/journal.pcbi.1008394
https://doi.org/10.1371/journal.pcbi.1008394
https://doi.org/10.1007/s12308-011-0129-1
https://doi.org/10.1007/s12308-011-0129-1
https://doi.org/10.1111/j.1749-6632.2010.05877.x
https://doi.org/10.1111/j.1749-6632.2010.05877.x
https://doi.org/10.3389/fimmu.2018.02278
https://doi.org/10.3389/fimmu.2018.02278
https://doi.org/10.1084/jem.132.2.211
https://doi.org/10.1084/jem.132.2.211
https://doi.org/10.1006/jmbi.1997.1354
https://doi.org/10.1006/jmbi.1997.1354
https://doi.org/10.1093/protein/gzq043
https://doi.org/10.1016/s0145-305x(02)00039-3
https://doi.org/10.1016/s0145-305x(02)00039-3
https://doi.org/10.1006/jmbi.2001.4662
https://doi.org/10.1006/jmbi.2001.4662
https://doi.org/10.1093/bioinformatics/btv552
https://doi.org/10.1093/bioinformatics/btv552
https://doi.org/10.1038/gene.2012.12
https://doi.org/10.1038/gene.2012.12
https://doi.org/10.3389/fimmu.2017.01407
https://doi.org/10.3389/fimmu.2017.01407


Slow delivery immunization enhances HIV
neutralizing antibody and germinal center
responses via modulation of immunodomi-
nance. Cell 177:1153–1171.e28. https://doi.
org/10.1016/j.cell.2019.04.012

64. Retter I, Chevillard C, Scharfe M, Conrad A,
Hafner M, Im T-H et al (2007) Sequence and
characterization of the Ig heavy chain constant
and partial variable region of the mouse strain
129S1. J Immunol 179:2419–2427. https://
doi.org/10.4049/jimmunol.179.4.2419

65. Collins AM, Wang Y, Roskin KM, Marquis CP,
Jackson KJL (2015) Themouse antibody heavy
chain repertoire is germline-focused and highly
variable between inbred strains. Philos Trans R
Soc Lond Ser B Biol Sci 370:20140236.
https://doi.org/10.1098/rstb.2014.0236

66. Magadan S, Krasnov A, Hadi-Saljoqi S,
Afanasyev S, Mondot S, Lallias D et al (2019)
Standardized IMGT® nomenclature of Salmo-
nidae IGH genes, the paradigm of Atlantic
Salmon and rainbow trout: from genomics to

repertoires. Front Immunol 10:2541. https://
doi.org/10.3389/fimmu.2019.02541

67. Magadan S, Mondot S, Palti Y, Gao G, Lefranc
MP, Boudinot P (2021) Genomic analysis of a
second rainbow trout line (Arlee) leads to an
extended description of the IGH VDJ gene
repertoire. Dev Comp Immunol 118:103998.
https://doi.org/10.1016/j.dci.2021.103998

68. Zhang W, Wang I-M, Wang C, Lin L, Chai X,
Wu J et al (2016) IMPre: an accurate and effi-
cient software for prediction of T- and B-cell
receptor germline genes and alleles from rear-
ranged repertoire data. Front Immunol 7:457.
https://doi.org/10.3389/fimmu.2016.
00457

69. Gadala-Maria D, Gidoni M, Marquez S, Van-
der Heiden JA, Kos JT, Watson CTet al (2019)
Identification of subject-specific immunoglob-
ulin alleles from expressed repertoire sequenc-
ing data. Front Immunol 10:129. https://doi.
org/10.3389/fimmu.2019.00129

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.

296 Lmar Babrak et al.

https://doi.org/10.1016/j.cell.2019.04.012
https://doi.org/10.1016/j.cell.2019.04.012
https://doi.org/10.4049/jimmunol.179.4.2419
https://doi.org/10.4049/jimmunol.179.4.2419
https://doi.org/10.1098/rstb.2014.0236
https://doi.org/10.3389/fimmu.2019.02541
https://doi.org/10.3389/fimmu.2019.02541
https://doi.org/10.1016/j.dci.2021.103998
https://doi.org/10.3389/fimmu.2016.00457
https://doi.org/10.3389/fimmu.2016.00457
https://doi.org/10.3389/fimmu.2019.00129
https://doi.org/10.3389/fimmu.2019.00129
http://creativecommons.org/licenses/by/4.0/

	Chapter 16: Adaptive Immune Receptor Repertoire (AIRR) Community Guide to TR and IG Gene Annotation
	1 Introduction
	2 Materials
	2.1 Computing Resources
	2.2 Software Tools
	2.3 Germline Databases

	3 Methods
	3.1 Preprocessing
	3.1.1 Filtering by Sequence or by Clone
	3.1.2 Read Length-Related Effects
	3.1.3 Productive Vs. Nonproductive Rearrangements

	3.2 Gene Annotation

	4 Conclusion
	References


