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Analysis of Small RNA Sequencing Data in Plants

Vanika Garg and Rajeev K. Varshney

Abstract

Over the past decades, next-generation sequencing (NGS) has been employed extensively for investigating
the regulatory mechanisms of small RNAs. Several bioinformatics tools are available for aiding biologists to
extract meaningful information from enormous amounts of data generated by NGS platforms. This chapter
describes a detailed methodology for analyzing small RNA sequencing data using different open source
tools. We elaborate on various steps involved in analysis, from processing the raw sequencing reads to
identifying miRNAs, their targets, and differential expression studies.
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1 Introduction

Small RNAs (sRNA) are typically 18–34 nucleotides (nts) long
non-coding molecules known to play a pivotal role in posttranscrip-
tional gene expression regulation. Next-generation sequencing
(NGS) is a powerful tool used to identify sRNAs in many plant
species. NGS has several advantages over microarray techniques as
it allows the discovery of novel sRNAs and has a better signal to
noise ratio than microarrays. The reduced cost of sequencing and
the availability of reagent kits from commercial companies have
made the preparation and sequencing of libraries from sRNA frag-
ments a routine process. However, NGS platforms generate an
enormous amount of data whose management is quite a tedious
task. The analysis of this data requires a lot of computational and
statistical knowledge to obtain meaningful information and address
complex biological questions.

This chapter introduces the researchers to different aspects of
the small RNA sequencing (sRNA-seq) data analysis. Bioinformat-
ics analysis of sRNA-seq data differs from standard RNA-seq pro-
tocols (Fig. 1). The sRNA-seq data analysis begins with filtration of
low-quality data, removal of adapter sequences, followed by
mapping of filtered data onto the ribosomal RNA (rRNA), transfer
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RNA (tRNA), small nuclear RNA (snRNA), and small nucleolar
RNA (snoRNA) using short read aligners. The reads mapping to
these RNAs are discarded as they are not the products of dicer-like
(DCL) protein activity and are thought to have very little likelihood
of being involved in small RNA pathways. The filtered reads are
further mapped to miRBase to identify the conserved miRNAs, and
the unmapped reads are processed to identify novel miRNAs using
various tools such as miRDeep-P [1], ShortStack [2], miRPlant
[3], MIReNA [4], and miRkwood [5]. These tools focus on
miRNA prediction by considering the essential features of miRNAs
like length, structural features, DCL cleavage, and their high con-
servation among species.
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Fig. 1 Schematic outline depicting the different steps involved in analyzing the
small RNA sequencing data

498 Vanika Garg and Rajeev K. Varshney



2 Materials

2.1 Workstation The analysis presented here requires, for best results, a 64-bit
version of the Linux operating system with at least 4 Gb RAM.

2.2 Small RNA

Sequencing Data

Raw reads from a small RNA sequencing experiment in Fastq
format. Publicly available data can be downloaded from the
Sequence Read Archive (SRA) under the National Centre for Bio-
technology Information (NCBI; https://www.ncbi.nlm.nih.gov/
sra). For this demonstration, we have selected an experiment on
chickpea [6]. We selected four samples (SRR12847935,
SRR12847937, SRR12847941, and SRR12847943) comprising
chickpea genotypes resistant and susceptible to Ascochyta blight
grown under control and Ascochyta blight inoculated conditions.

2.3 Reference

Genome

The species reference genome sequence in the FASTA format. In
this case, we downloaded the chickpea (C. arietinum)
CDC-Frontier reference genome from NCBI [7].

2.4 Software and

Tools

The workflow will require the following tools. The installation
instructions of tools can be found on their respective websites.

1. Trimmomatic v0.39 (http://www.usadellab.org/cms/?
page¼trimmomatic [8]).

2. Cutadapt v2.10 (https://cutadapt.readthedocs.io/en/stable/
guide.html [9]).

3. FASTX-Toolkit v0.0.14 (http://hannonlab.cshl.edu/fastx_
toolkit/).

4. Bowtie v1.2.2 (http://bowtie-bio.sourceforge.net/ [10]).

5. ViennaRNA Package v2.4.15 (http://www.tbi.univie.ac.at/
~ivo/RNA/ [11]).

6. randfold v2.0 (https://github.com/erbon7/randfold),

7. miRDeep-P v1.3 (https://sourceforge.net/projects/mirdp/
[1]),

8. R v4.0.3 (https://cran.r-project.org/).

9. DESeq2 v1.28.1 (https://bioconductor.org/packages/
release/bioc/html/DESeq2.html [12]).

10. SAMtools v1.10-2 (https://github.com/samtools/ [13]).

The workflow demonstrated below applies to single-end sRNA
sequencing data generated from the Illumina sequencing platform.
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3 Methods

3.1 Data

Preprocessing

The raw reads obtained from sRNA-seq are first subjected to qual-
ity check, including removal of low-quality reads and adapter
sequences (see Note 1). This step can be performed using trimmo-
matic with the following command:

> java -jar trimmomatic-0.39.jar SE -threads 2 SRR12847935.fq.

gz SRR12847935.cleaned.fq ILLUMINACLIP:illumina.fa:2:30:10 SL

IDINGWINDOW:10:20

Here, the file illumina.fa contains the adapter sequences and is
provided with trimmomatic. The ILLUMINACLIP option
instructs trimmomatic to cut adapters and other Illumina-specific
sequences from the reads. The SLIDINGWINDOW option speci-
fies the window size and the Phred-quality score to trim low-quality
bases. The number of threads “-threads” can be increased based on
the number of cores available on the user’s machine to speed up this
step. Further, the reads with poly-A tail are trimmed, and reads
shorter than 18 nt and longer than 34 nt are discarded using
Cutadapt (see Note 2):

> cutadapt -a "A{20}" -m 18 -M 34 -o SRR12847935.cleaned.

polyAtrimmed.fq SRR12847935.cleaned.fq

Here, -m and -M specify the minimum and maximum length of
sequences to retain after trimming, respectively. The above steps of
filtering are performed on all samples, and then the filtered reads
obtained from each sample are combined into a single fastq file
using the cat command:

> cat *.cleaned.polyAtrimmed.fq > combined_reads.fq

The combined reads are converted into fasta format and col-
lapsed into unique tags. For collapsing the reads, fastx_collapser
from FASTX-Toolkit is used. The unique tag file is further format-
ted to make it compatible with miRNA prediction software to be
used in downstream analysis using sed command.

> cat combined_reads.fq | paste - - - - | sed ’s/^@/>/g’ | cut

-f 1,2 | tr ’\t’ ’\n’ > combined_reads.fa

> fastx_collapser -i combined_reads.fa -o unique_tags.fa

> sed -i ’s/-/_x/’ unique_tags.fa
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The final data preparation step involves the removal of read
mapping to ribosomal RNA (rRNA), transfer RNA (tRNA), small
nuclear (snRNA), small nucleolar RNA (snoRNA), and repeat
sequences. For rRNA, tRNA, snRNA, and snoRNA removal,
reads can be aligned using Bowtie to a database of r-, t-, sn-, and
sno-RNA sequences (can be downloaded from the Rfam database
[14]). Similarly, for eliminating read mapping to repeat regions, the
Repbase database (https://www.girinst.org/repbase/) can be
used. Before running the alignment step, users need to create an
index file for the database using bowtie-build.

> bowtie-build rfam.fa rfam

> bowtie rfam -f unique_tags.fa -S unique_tags.ncRNA.sam --un

unique_tags.unaligned.ncRNA.fa

> bowtie-build repeats.fa repeats

> bowtie repeats -f unique_tags.unaligned.ncRNA.fa -S unique_-

tags.unaligned.ncRNA.repeats.sam --un unique_tags.filtered.fa

Here, -f and -S specify that the input file is in fasta format, and
the output is in sequence alignment map (SAM) format, respec-
tively. In the command, --un specifies the name of the file where the
unaligned reads are stored.

3.2 Identification of

Known miRNAs

The filtered reads (unique_tags.filtered.fa) from Subheading 3.1
are aligned against the known plant miRNAs from the miRBase
database [15] using Bowtie to identify conserved or known miR-
NAs (see Note 3).

> bowtie-build mirbase.fa mirbase

> bowtie mirbase -n 2 -f unique_tags.filtered.fa -S unique_-

tags.filtered.mirbase.sam --un forNovelPrediction.fa

Here, the number of mismatches can be changed using the
parameter “-n”; in this example, we have used two mismatches.
The list of known miRNAs and their sequences can be extracted by
parsing the alignment file using the command:

> grep -v "^@" unique_tags.filtered.mirbase.sam | awk -F"\t"

’{if($3!="*") print}’ | cut -f 1,3 | sort -u > known_miRNAs.

txt
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3.3 Identification of

Novel miRNAs

The unique reads that do not align against the miRBase database
are used for novel miRNA prediction. The prediction will be carried
out using the miRDeep-P package in this demonstration.
miRDeep-P is a freely available package that includes nine Perl
scripts, which are executed sequentially to predict miRNAs based
on plant-specific criteria [1]. A detailed manual and example data-
sets are provided with the package. The reads not aligning to
known plant miRNAs are first mapped to the reference genome
using Bowtie with either 0 or 1 mismatch for novel miRNA
prediction.

> bowtie-build chickpea.genome.fa chickpea.genome

> bowtie chickpea.genome -n 0 -f forNovelPrediction.fa -S

forNovelPrediction.genome.sam

Next, the bowtie alignments in SAM format are converted to
blast format using the script “convert_SAM_to_blast.pl”‘provided
with miRDeep-P package. The script requires a file with bowtie
alignments, unique tags, and the reference genome (in fasta
format):

> perl miRDeep-P/convert_SAM_to_blast.pl forNovelPrediction.

genome.sam forNovelPrediction.fa chickpea.genome.fa > genome.

bst

Further, the alignments are filtered to retain only those with
100% sequence identity, full-length alignment, and the number of
matches that do not exceed a user-specified cutoff (�c 15 in this
example and can be changed according to the species of interest)
using the “filter_alignments.pl” script.

> perl miRDeep-P/filter_alignments.pl genome.bst -c 15 >

genome.filter15.bst

The reads that overlap with the known annotated features
(exons, CDS, etc.) of the species under study are discarded. The
corresponding annotations can be obtained from the public data-
bases like NCBI (https://www.ncbi.nlm.nih.gov/) or Phytozome
(https://phytozome.jgi.doe.gov/) depending on the species of
interest. This step is executed using “overlap.pl” and “alignedse-
lected.pl” scripts:

> perl miRDeep-P/overlap.pl genome.filter15.bst Chickpea.

gene.gff -b > genome.filter15.overlap_CDS

> perl miRDeep-P/alignedselected.pl genome.filter15.bst -g

genome.filter15.overlap_CDS > genome.filter15.CDS.bst
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The following script extracts the fasta sequences of the reads
filtered in the previous step.

> perl miRDeep-P/filter_alignments.pl genome.filter15.CDS.bst

-b forNovelPrediction.fa > genome.filter15.CDS.filtered.fa

Next, we extract the potential precursor sequences from the
reference genome using “excise_candidate.pl”. The script takes the
reference genome (in fasta format) and the filtered alignments. The
authors of the miRDeep-P recommend 250 bp as the optimal
window size for extracting precursor sequences for both monocot
and dicot plants.

> perl miRDeep-P/excise_candidate.pl chickpea.genome.fa gen-

ome.filter15.CDS.bst 250 > genome.filter15.CDS.precursors.fa

The secondary structures of the potential precursor sequences
are then predicted using RNAfold utility from the ViennaRNA
package [11]. The users can invoke the --noPS option to avoid
the graphical output (see Note 4).

> cat genome.filter15.CDS.precursors.fa | RNAfold --noPS >

genome.filter15.CDS.structures

Now, the filtered reads are aligned to potential precursor
sequences to generate miRNA signatures. The alignment file gen-
erated by mapping the reads onto the precursor sequences is con-
verted into blast format and finally sorted to obtain signatures using
the following commands:

> bowtie-build -f genome.filter15.CDS.precursors.fa genome.

filter15.CDS.precursors

> bowtie genome.filter15.CDS.precursors -f genome.filter15.

CDS.filtered.fa -S genome.filter15.CDS.precursors.sam

> perl miRDeep-P/convert_SAM_to_blast.pl genome.filter15.CDS.

precursors.sam genome.filter15.CDS.filtered.fa genome.fil-

ter15.CDS.precursors.fa > precursors.bst

> sort +3 -25 precursors.bst > signatures

Once the signatures are generated, the “miRDP.pl” script com-
bines this information with structures obtained using RNAfold to
make miRNA predictions.
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> perl miRDeep-P/miRDP.pl signatures genome.filter15.CDS.

structures -y > predictions

Finally, the predicted miRNAs are filtered to remove redundant
miRNAs and miRNAs that do not meet the criteria of plant miR-
NAs using the “rm_redundant_meet_plant.pl” script. This script
requires the length of each chromosome of the reference genome,
precursors, and miRNA predictions. For obtaining chromosome
lengths, the faidx utility of samtools is used.

> samtools faidx Chickpea.genome.fa

> perl miRDeep-P/rm_redundant_meet_plant.pl Chickpea.genome.

fa.fai genome.filter15.CDS.precursors.fa predictions nr_pre-

dictions novel_plant_miRNAs

This step gives us novel miRNAs, which, together with known
miRNAs from Subheading 3.2, constitute the final list of miRNAs
(all_miRNAs).

3.4 Prediction of

miRNA Targets

For understanding the function of miRNAs, it is imperative to
predict their targets. In contrast to animal miRNAs, plant miRNAs
are known to have perfect or near-perfect complementarity with
their targets. Utilizing the complementarity attribute, several tools
with varying degrees of specificity and sensitivity are available for
miRNA target prediction. Some of the widely used target predic-
tion tools include TAPIR [16], psRobot [17], comTAR [18], and
psRNATarget [19]. Besides similarity-based computational tools,
the miRNA targets can also be predicted using a highly sensitive
and powerful approach called degradome sequencing [20]. The
degradome sequencing data offers patterns of RNA degradation
and can be analyzed using different computational pipelines such as
CleaveLand [21], SeqTar [22], sPARTA [23], and
PAREsnip2 [24].

For this demonstration, we use the psRNATarget server
(http://plantgrn.noble.org/psRNATarget/analysis), which offers
an easy-to-use graphical user interface. It employs an accelerated
Smith–Waterman algorithm to find the best sRNA/mRNA com-
plementarity location in the target candidate and to indicate
whether the miRNA is involved in cleavage or translational inhibi-
tion. For prediction, upload the small RNA sequences into the
online portal and select the corresponding species database. In
case the transcript sequences are not available for a given species,
the users can upload both the small RNA and the transcript
sequences for prediction. An example of psRNATarget results is
shown in Fig. 2.
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3.5 Differential

Expression of miRNAs

Once the miRNAs are identified, the most common downstream
analysis is to study the expression patterns of these miRNAs across
different samples. The expression of miRNAs for all samples is
quantified by aligning the filtered reads from each sample to the
final set of miRNA sequences.

> bowtie-build all_miRNAs.fa all_miRNAs

> bowtie all_miRNAs --best -v 2 -q SRR12847935.cleaned.poly-

Atrimmed.fq -S SRR12847935.sam

> samtools view -bS SRR12847935.sam | samtools sort -o

SRR12847935.bam -O bam -

> samtools index SRR12847935.bam

> samtools idxstats SRR12847935.bam | cut -f 1,3 >

SRR12847935.counts.txt

The above commands are run on all samples to create a counts
file for each sample. Next, we perform differential expression anal-
ysis using the DESeq2 package in R/Bioconductor (see Note 5).
DESeq2 models raw read counts as negative binomial distribution
with generalized linear models [12]. Before running DESeq2, we
need to create two tab-separated text files, i.e., raw counts matrix
file (“counts.txt”) and samples list file (“samples.txt”). The raw
counts matrix can be created by combining the individual count
files. The samples list file should contain the list of all samples as the
first column followed by sample details in the subsequent columns,

Fig. 2 Screenshot of psRNATarget results highlighting the miRNA–mRNA pair. The columns “miRNA Acc.” and
“Target Acc.” indicate the miRNAs and their targets, respectively
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e.g., treatment, condition, time point. The first row in this file
should specify the type of column. Once these files are ready, the
users can use the command-line version of R or the GUI like
RStudio to execute the commands:

> library(DESeq2)

> countData <- read.table("counts.txt", sep="\t", header=T,

as.is=T, row.names=1)

> colData <- read.table("samples.txt", sep="\t", header=T,

as.is=T, row.names=1)

> colData$id <- rownames(colData)

> dds <- DESeqDataSetFromMatrix(countData=countData, colDa-

ta=colData, design= ~ treatment)

> dds <- DESeq(dds, betaPrior=F)

The differentially expressed miRNAs between a pair of samples
can be obtained using the commands:

> res <- results(dds, contrast=c("treatment",<sample1>,

<sample2>))

> write.table(res, file="diff_exp_miRNAs_sample1_vs_sample2.

txt", sep="\t", quote=F)

SR
R
12847935

SR
R
12847937

SR
R
12847941

SR
R
12847943

miR396-5p
miR159i-3p
miR171p
miR319e
miR482-3p
miR319a-3p
miR396g-3p
miR319
miR319b
miR2586b
miR399a
miR162-5p
miR166i-3p
miR166m-5p
miR166l
miR166b-3p
miR166d-3p
miR166e
miR2118b-5p
miR166a-3p
miR166d

-3

-2

-1

0

1

2

Fig. 3 Heatmap of the differentially expressed miRNAs identified from different chickpea samples. Heatmap
was drawn with mean-centered log2 normalized expression values using the pheatmap R package
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The differentially expressed miRNAs can be filtered using fold
change �1 or ��1 and a P-value <0.05. The expression profiles of
miRNAs can be plotted as heat maps using either web-based tools
such as WebMeV (http://mev.tm4.org) or R packages like pheat-
map [25] and ComplexHeatmap [26]. An example heatmap
showing the expression profile of different miRNAs is presented
in Fig. 3.

4 Notes

1. Users should check the adapter removal statistics during the
filtering step. The adapter sequences should be present in the
majority of reads, ideally in over 90% of them. Lower percen-
tages could indicate that the adapter sequence is incomplete or
that the software used for adapter removal is not able to find all
occurrences of the adapter. For accuracy, users can try more
than one tool for this step.

2. The majority of NGS workflows include PCR duplicate
removal, but in the case of sRNA-seq analysis, this step should
be avoided. As sRNA libraries mostly consist of short reads with
nearly identical sequences, filtering for duplicate reads will
remove the highly expressed sRNAs, thus producing skewed
results.

3. In the case of the identification of conserved miRNAs, miRNAs
from miRBase should be selected carefully. It has been noted
that many miRNAs reported in miRBase are false positives. For
accurate detection, the “high confidence” miRNA list from
miRBase should be selected, or a list of miRNAs conserved
across all vascular plants or closely related species can be used.

4. For differential expression analysis, other R packages, edgeR
[27] or limma [28], can also be used.

5. Predicting secondary structures is one of the most time-
consuming steps. In case the number of candidate precursors
is large, the users can divide them into small chunks and then
run these chunks in parallel.
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