Skip to main content

Examination of Galectin-3 Recruitment into Multivesicular Bodies for Exosomal Secretion

  • Protocol
  • First Online:
Galectins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2442))

Abstract

Cells use unconventional secretion to deliver the β-galactoside binding lectin galectin-3 from the cell interior into the extracellular milieu. This process starts with galectin-3 recruitment into intraluminal vesicles (ILVs), which are later released at the plasma membrane as exosomes. Electron microscopy is utilized to determine the location of GFP-tagged galectin-3 in pelleted exosomes. We also describe how these vesicles are harvested from cell culture media to determine their composition. The fluorescent protein GFP was fused with the exosomal sorting motif of galectin-3 to direct GFP into exosomes. Recruitment of this fusion construct into the lumen of exosomes can be assessed by proteinase K accessibility analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rabouille C (2017) Pathways of unconventional protein secretion. Trends Cell Biol 27(3):230–240. https://doi.org/10.1016/j.tcb.2016.11.007

    Article  CAS  PubMed  Google Scholar 

  2. Leffler H, Carlsson S, Hedlund M, Qian Y, Poirier F (2004) Introduction to galectins. Glycoconj J 19(7–9):433–440

    Google Scholar 

  3. Lepur A, Salomonsson E, Nilsson UJ, Leffler H (2012) Ligand induced galectin-3 protein self-association. J Biol Chem 287(26):21751–21756. https://doi.org/10.1074/jbc.C112.358002. C112.358002 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bänfer S, Schneider D, Dewes J, Strauss MT, Freibert S-A, Heimerl T, Maier UG, Elsässer H-P, Jungmann R, Jacob R (2018) Molecular mechanism to recruit galectin-3 into multivesicular bodies for polarized exosomal secretion. Proc Natl Acad Sci 115(19):E4396–E4405. https://doi.org/10.1073/pnas.1718921115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fortuna-Costa A, Gomes AM, Kozlowski EO, Stelling MP, Pavão MSG (2014) Extracellular galectin-3 in tumor progression and metastasis. Front Oncol 4:138–138. https://doi.org/10.3389/fonc.2014.00138

    Article  PubMed  PubMed Central  Google Scholar 

  6. Johannes L, Jacob R, Leffler H (2018) Galectins at a glance. J Cell Sci 131(9). https://doi.org/10.1242/jcs.208884

  7. Delacour D, Jacob R (2006) Apical protein transport. Cell Mol Life Sci 63(21):2491–2505

    Article  CAS  Google Scholar 

  8. Delacour D, Cramm-Behrens CI, Drobecq H, Le Bivic A, Naim HY, Jacob R (2006) Requirement for galectin-3 in apical protein sorting. Curr Biol 16(4):408–414

    Article  CAS  Google Scholar 

  9. Lindstedt R, Apodaca G, Barondes SH, Mostov KE, Leffler H (1993) Apical secretion of a cytosolic protein by Madin-Darby canine kidney cells. Evidence for polarized release of an endogenous lectin by a nonclassical secretory pathway. J Biol Chem 268(16):11750–11757

    Article  CAS  Google Scholar 

  10. Sato S, Burdett I, Hughes RC (1993) Secretion of the baby hamster kidney 30-kDa galactose-binding lectin from polarized and nonpolarized cells: a pathway independent of the endoplasmic reticulum-Golgi complex. Exp Cell Res 207(1):8–18. https://doi.org/10.1006/excr.1993.1157. S0014-4827(83)71157-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  11. Cleves AE, Cooper DN, Barondes SH, Kelly RB (1996) A new pathway for protein export in Saccharomyces cerevisiae. J Cell Biol 133(5):1017–1026. https://doi.org/10.1083/jcb.133.5.1017

    Article  CAS  PubMed  Google Scholar 

  12. Hughes RC (1999) Secretion of the galectin family of mammalian carbohydrate-binding proteins. Biochim Biophys Acta 1473(1):172–185

    Article  CAS  Google Scholar 

  13. Stalz H, Roth U, Schleuder D, Macht M, Haebel S, Strupat K, Peter-Katalinic J, Hanisch FG (2006) The Geodia cydonium galectin exhibits prototype and chimera-type characteristics and a unique sequence polymorphism within its carbohydrate recognition domain. Glycobiology 16(5):402–414. https://doi.org/10.1093/glycob/cwj086

    Article  CAS  PubMed  Google Scholar 

  14. Muller WE, Conrad J, Schroder C, Zahn RK, Kurelec B, Dreesbach K, Uhlenbruck G (1983) Characterization of the trimeric, self-recognizing Geodia cydonium lectin I. Eur J Biochem 133(2):263–267

    Article  CAS  Google Scholar 

  15. Wagner-Hülsmann C, Bachinski N, Diehl-Seifert B, Blumbach B, Steffen R, Pancer Z, Müller WEG (1996) A galectin links the aggregation factor to cells in the sponge (Geodia cydonium) system. Glycobiology 6(8):785–793. https://doi.org/10.1093/glycob/6.8.785-d

    Article  PubMed  Google Scholar 

  16. Fan X, She Y-M, Bagshaw RD, Callahan JW, Schachter H, Mahuran DJ (2005) Identification of the hydrophobic glycoproteins of Caenorhabditis elegans. Glycobiology 15(10):952–964. https://doi.org/10.1093/glycob/cwi075

    Article  CAS  PubMed  Google Scholar 

  17. Di Lella S, Sundblad V, Cerliani JP, Guardia CM, Estrin DA, Vasta GR, Rabinovich GA (2011) When galectins recognize glycans: from biochemistry to physiology and back again. Biochemistry 50(37):7842–7857. https://doi.org/10.1021/bi201121m

    Article  CAS  PubMed  Google Scholar 

  18. Ideo H, Fukushima K, Gengyo-Ando K, Mitani S, Dejima K, Nomura K, Yamashita K (2009) A Caenorhabditis elegans glycolipid-binding galectin functions in host defense against bacterial infection. J Biol Chem 284(39):26493–26501. https://doi.org/10.1074/jbc.M109.038257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rabouille C, Malhotra V, Nickel W (2012) Diversity in unconventional protein secretion. J Cell Sci 125(22):5251–5255. https://doi.org/10.1242/jcs.103630

    Article  CAS  PubMed  Google Scholar 

  20. Nickel W, Rabouille C (2009) Mechanisms of regulated unconventional protein secretion. Nat Rev Mol Cell Biol 10(2):148–155. https://doi.org/10.1038/nrm2617

    Article  CAS  PubMed  Google Scholar 

  21. Madrigal-Matute J, Lindholt JS, Fernandez-Garcia CE, Benito-Martin A, Burillo E, Zalba G, Beloqui O, Llamas-Granda P, Ortiz A, Egido J, Blanco-Colio LM, Martin-Ventura JL (2014) Galectin-3, a biomarker linking oxidative stress and inflammation with the clinical outcomes of patients with atherothrombosis. J Am Heart Assoc 3(4):e000785. https://doi.org/10.1161/jaha.114.000785

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gonzales PA, Pisitkun T, Hoffert JD, Tchapyjnikov D, Star RA, Kleta R, Wang NS, Knepper MA (2009) Large-scale proteomics and phosphoproteomics of urinary exosomes. J Am Soc Nephrol 20(2):363–379. https://doi.org/10.1681/ASN.2008040406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liang B, Peng P, Chen S, Li L, Zhang M, Cao D, Yang J, Li H, Gui T, Li X, Shen K (2013) Characterization and proteomic analysis of ovarian cancer-derived exosomes. J Proteome 80:171–182. https://doi.org/10.1016/j.jprot.2012.12.029

    Article  CAS  Google Scholar 

  24. Welton JL, Khanna S, Giles PJ, Brennan P, Brewis IA, Staffurth J, Mason MD, Clayton A (2010) Proteomics analysis of bladder cancer exosomes. Mol Cell Proteomics 9(6):1324–1338. https://doi.org/10.1074/mcp.M000063-MCP201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pornillos O, Alam SL, Rich RL, Myszka DG, Davis DR, Sundquist WI (2002) Structure and functional interactions of the Tsg101 UEV domain. EMBO J 21(10):2397–2406. https://doi.org/10.1093/emboj/21.10.2397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Richardson JC, Scalera V, Simmons NL (1981) Identification of two strains of MDCK cells which resemble separate nephron tubule segments. Biochim Biophys Acta 673(1):26–36

    Article  CAS  Google Scholar 

  27. Delacour D, Greb C, Koch A, Salomonsson E, Leffler H, Le Bivic A, Jacob R (2007) Apical sorting by galectin-3-dependent glycoprotein clustering. Traffic 8(4):379–388

    Article  CAS  Google Scholar 

  28. Savina A, Furlan M, Vidal M, Colombo MI (2003) Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J Biol Chem 278(22):20083–20090. https://doi.org/10.1074/jbc.M301642200

    Article  CAS  PubMed  Google Scholar 

  29. Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, Geuze HJ (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183(3):1161–1172. https://doi.org/10.1084/jem.183.3.1161

    Article  CAS  PubMed  Google Scholar 

  30. Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212. https://doi.org/10.1083/jcb.17.1.208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kalra H, Adda CG, Liem M, Ang C-S, Mechler A, Simpson RJ, Hulett MD, Mathivanan S (2013) Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma. Proteomics 13(22):3354–3364. https://doi.org/10.1002/pmic.201300282

    Article  CAS  PubMed  Google Scholar 

  32. Théry C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol Chapter 3:Unit 3.22. https://doi.org/10.1002/0471143030.cb0322s30

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sebastian Bänfer or Ralf Jacob .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bänfer, S., Kutscher, S., Jacob, R. (2022). Examination of Galectin-3 Recruitment into Multivesicular Bodies for Exosomal Secretion. In: Stowell, S.R., Arthur, C.M., Cummings, R.D. (eds) Galectins. Methods in Molecular Biology, vol 2442. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2055-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2055-7_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2054-0

  • Online ISBN: 978-1-0716-2055-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics