Skip to main content

From Cerebellar Genes to Behaviors in Zebrafish

  • Protocol
  • First Online:
Measuring Cerebellar Function

Part of the book series: Neuromethods ((NM,volume 177))

  • 745 Accesses

Abstract

The cerebellum is involved in some forms of motor coordination and learning, and also in non-motor cognitive and emotional functions. These functions of the cerebellum rely on the structure of the neural circuit which is generally conserved among vertebrates. As the zebrafish became a versatile animal model to study the development and function of the vertebrate brain, its cerebellum was studied over the last decade. Although the zebrafish cerebellum has a small and simple structure, it has layer and neural circuit structures as well as motor and non-motor functions similar to the mammalian cerebellum, and the same genetic program. Therefore, the zebrafish cerebellum is a good model for understanding the development and function of the cerebellum of mammals, including humans. In this review, we outline the structure and development of the zebrafish cerebellum, and explain the molecular and transgenic tools that are used to study it. Finally, we discuss how studies on the zebrafish cerebellar circuits contribute to our understanding the vertebrate cerebellum and human diseases caused by cerebellar defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The role of the zebrafish cerebellum in active avoidance has recently been reported in [100].

References

  1. Ito M (2006) Cerebellar circuitry as a neuronal machine. Prog Neurobiol 78(3–5):272–303

    Article  PubMed  Google Scholar 

  2. Ito M (2008) Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci 9(4):304–313

    Article  CAS  PubMed  Google Scholar 

  3. Raymond JL, Lisberger SG, Mauk MD (1996) The cerebellum: a neuronal learning machine? Science 272(5265):1126–1131

    Article  CAS  PubMed  Google Scholar 

  4. Yoshida M, Okamura I, Uematsu K (2004) Involvement of the cerebellum in classical fear conditioning in goldfish. Behav Brain Res 153(1):143–148

    Article  PubMed  Google Scholar 

  5. Glickstein M (2007) What does the cerebellum really do? Curr Biol 17(19):R824–R827

    Article  CAS  PubMed  Google Scholar 

  6. Strata P (2015) The emotional cerebellum. Cerebellum 14(5):570–577

    Article  PubMed  Google Scholar 

  7. Adamaszek M, D'Agata F, Ferrucci R, Habas C, Keulen S, Kirkby KC, Leggio M, Marien P, Molinari M, Moulton E, Orsi L, Van Overwalle F, Papadelis C, Priori A, Sacchetti B, Schutter DJ, Styliadis C, Verhoeven J (2017) Consensus paper: cerebellum and emotion. Cerebellum 16(2):552–576

    Article  CAS  PubMed  Google Scholar 

  8. Matsuda K, Yoshida M, Kawakami K, Hibi M, Shimizu T (2017) Granule cells control recovery from classical conditioned fear responses in the zebrafish cerebellum. Sci Rep 7(1):11865

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wagner MJ, Kim TH, Savall J, Schnitzer MJ, Luo L (2017) Cerebellar granule cells encode the expectation of reward. Nature 544(7648):96–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schmahmann JD (2019) The cerebellum and cognition. Neurosci Lett 688:62–75

    Article  CAS  PubMed  Google Scholar 

  11. Bae YK, Kani S, Shimizu T, Tanabe K, Nojima H, Kimura Y, Higashijima S, Hibi M (2009) Anatomy of zebrafish cerebellum and screen for mutations affecting its development. Dev Biol 330(2):406–426

    Article  CAS  PubMed  Google Scholar 

  12. Wullimann MF, Rupp B, Reichert H (1996) Neuroanatomy of the zebrafish brain: a topological atla. Birkhäuser Verlag

    Google Scholar 

  13. Hashimoto M, Hibi M (2012) Development and evolution of cerebellar neural circuits. Develop Growth Differ 54(3):373–389

    Article  CAS  Google Scholar 

  14. Hibi M, Matsuda K, Takeuchi M, Shimizu T, Murakami Y (2017) Evolutionary mechanisms that generate morphology and neural-circuit diversity of the cerebellum. Develop Growth Differ 59(4):228–243

    Article  Google Scholar 

  15. Hibi M, Shimizu T (2012) Development of the cerebellum and cerebellar neural circuits. Dev Neurobiol 72(3):282–301

    Article  PubMed  Google Scholar 

  16. Hibi M, Shimizu T (2014) Deciphering cerebellar neural circuitry involved in higher order functions using the zebrafish model. In: Kondo H, Kuroiwa A (eds) New principles in developmental processes. Springer, New York, pp 161–184

    Chapter  Google Scholar 

  17. Matsui H, Namikawa K, Babaryka A, Koster RW (2014) Functional regionalization of the teleost cerebellum analyzed in vivo. Proc Natl Acad Sci U S A 111(32):11846–11851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Takeuchi M, Matsuda K, Yamaguchi S, Asakawa K, Miyasaka N, Lal P, Yoshihara Y, Koga A, Kawakami K, Shimizu T, Hibi M (2015) Establishment of Gal4 transgenic zebrafish lines for analysis of development of cerebellar neural circuitry. Dev Biol 397(1):1–17

    Article  CAS  PubMed  Google Scholar 

  19. Hidalgo-Sanchez M, Millet S, Simeone A, Alvarado-Mallart RM (1999) Comparative analysis of Otx2, Gbx2, Pax2, Fgf8 and Wnt1 gene expressions during the formation of the chick midbrain/hindbrain domain. Mech Dev 81(1–2):175–178

    Article  CAS  PubMed  Google Scholar 

  20. Joyner AL, Liu A, Millet S (2000) Otx2, Gbx2 and Fgf8 interact to position and maintain a mid-hindbrain organizer. Curr Opin Cell Biol 12 (6):736–741

    Google Scholar 

  21. Simeone A (2000) Positioning the isthmic organizer where Otx2 and Gbx2 meet. Trends Genet 16(6):237–240

    Article  CAS  PubMed  Google Scholar 

  22. Wurst W, Bally-Cuif L (2001) Neural plate patterning: upstream and downstream of the isthmic organizer. Nat Rev Neurosci 2(2):99–108

    Article  CAS  PubMed  Google Scholar 

  23. Acampora D, Avantaggiato V, Tuorto F, Simeone A (1997) Genetic control of brain morphogenesis through Otx gene dosage requirement. Development 124(18):3639–3650

    Article  CAS  PubMed  Google Scholar 

  24. Broccoli V, Boncinelli E, Wurst W (1999) The caudal limit of Otx2 expression positions the isthmic organizer. Nature 401(6749):164–168

    Article  CAS  PubMed  Google Scholar 

  25. Millet S, Campbell K, Epstein DJ, Losos K, Harris E, Joyner AL (1999) A role for Gbx2 in repression of Otx2 and positioning the mid/hindbrain organizer. Nature 401(6749):161–164

    Article  CAS  PubMed  Google Scholar 

  26. Simeone A, Acampora D, Gulisano M, Stornaiuolo A, Boncinelli E (1992) Nested expression domains of four homeobox genes in developing rostral brain. Nature 358(6388):687–690

    Article  CAS  PubMed  Google Scholar 

  27. Suda Y, Matsuo I, Aizawa S (1997) Cooperation between Otx1 and Otx2 genes in developmental patterning of rostral brain. Mech Dev 69(1–2):125–141

    Article  CAS  PubMed  Google Scholar 

  28. Wassarman KM, Lewandoski M, Campbell K, Joyner AL, Rubenstein JL, Martinez S, Martin GR (1997) Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on Gbx2 gene function. Development 124(15):2923–2934

    Article  CAS  PubMed  Google Scholar 

  29. Kikuta H, Kanai M, Ito Y, Yamasu K (2003) gbx2 Homeobox gene is required for the maintenance of the isthmic region in the zebrafish embryonic brain. Dev Dyn 228 (3):433–450

    Google Scholar 

  30. Rhinn M, Lun K, Ahrendt R, Geffarth M, Brand M (2009) Zebrafish gbx1 refines the midbrain-hindbrain boundary border and mediates the Wnt8 posteriorization signal. Neural Dev 4:12

    Article  PubMed  PubMed Central  Google Scholar 

  31. Su CY, Kemp HA, Moens CB (2014) Cerebellar development in the absence of Gbx function in zebrafish. Dev Biol 386(1):181–190

    Article  CAS  PubMed  Google Scholar 

  32. Buckles GR, Thorpe CJ, Ramel MC, Lekven AC (2004) Combinatorial Wnt control of zebrafish midbrain-hindbrain boundary formation. Mech Dev 121(5):437–447

    Article  CAS  PubMed  Google Scholar 

  33. Reifers F, Bohli H, Walsh EC, Crossley PH, Stainier DY, Brand M (1998) Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis. Development 125(13):2381–2395

    Article  CAS  PubMed  Google Scholar 

  34. Brand M, Heisenberg CP, Jiang YJ, Beuchle D, Lun K, Furutani-Seiki M, Granato M, Haffter P, Hammerschmidt M, Kane DA, Kelsh RN, Mullins MC, Odenthal J, van Eeden FJ, Nusslein-Volhard C (1996) Mutations in zebrafish genes affecting the formation of the boundary between midbrain and hindbrain. Development 123:179–190

    Article  CAS  PubMed  Google Scholar 

  35. Foucher I, Mione M, Simeone A, Acampora D, Bally-Cuif L, Houart C (2006) Differentiation of cerebellar cell identities in absence of Fgf signalling in zebrafish Otx morphants. Development 133(10):1891–1900

    Article  CAS  PubMed  Google Scholar 

  36. Wingate RJ (2001) The rhombic lip and early cerebellar development. Curr Opin Neurobiol 11(1):82–88

    Article  CAS  PubMed  Google Scholar 

  37. Wingate RJ, Hatten ME (1999) The role of the rhombic lip in avian cerebellum development. Development 126(20):4395–4404

    Article  CAS  PubMed  Google Scholar 

  38. Zervas M, Millet S, Ahn S, Joyner AL (2004) Cell behaviors and genetic lineages of the mesencephalon and rhombomere 1. Neuron 43(3):345–357

    Article  CAS  PubMed  Google Scholar 

  39. Abdelfattah AS, Kawashima T, Singh A, Novak O, Liu H, Shuai Y, Huang YC, Campagnola L, Seeman SC, Yu J, Zheng J, Grimm JB, Patel R, Friedrich J, Mensh BD, Paninski L, Macklin JJ, Murphy GJ, Podgorski K, Lin BJ, Chen TW, Turner GC, Liu Z, Koyama M, Svoboda K, Ahrens MB, Lavis LD, Schreiter ER (2019) Bright and photostable chemigenetic indicators for extended in vivo voltage imaging. Science 365(6454):699–704

    Article  CAS  PubMed  Google Scholar 

  40. Alder J, Cho NK, Hatten ME (1996) Embryonic precursor cells from the rhombic lip are specified to a cerebellar granule neuron identity. Neuron 17(3):389–399

    Article  CAS  PubMed  Google Scholar 

  41. Ben-Arie N, Bellen HJ, Armstrong DL, McCall AE, Gordadze PR, Guo Q, Matzuk MM, Zoghbi HY (1997) Math1 is essential for genesis of cerebellar granule neurons. Nature 390 (6656):169–172

    Google Scholar 

  42. Machold R, Fishell G (2005) Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron 48 (1):17–24

    Google Scholar 

  43. Wang VY, Rose MF, Zoghbi HY (2005) Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron 48 (1):31–43

    Google Scholar 

  44. Wilson LJ, Wingate RJ (2006) Temporal identity transition in the avian cerebellar rhombic lip. Dev Biol 297(2):508–521

    Article  CAS  PubMed  Google Scholar 

  45. Wingate R (2005) Math-map(ic)s. Neuron 48(1):1–4

    Article  CAS  PubMed  Google Scholar 

  46. Chaplin N, Tendeng C, Wingate RJ (2010) Absence of an external germinal layer in zebrafish and shark reveals a distinct, anamniote ground plan of cerebellum development. J Neurosci 30(8):3048–3057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kani S, Bae YK, Shimizu T, Tanabe K, Satou C, Parsons MJ, Scott E, Higashijima S, Hibi M (2010) Proneural gene-linked neurogenesis in zebrafish cerebellum. Dev Biol 343(1–2):1–17

    Article  CAS  PubMed  Google Scholar 

  48. Hoshino M (2006) Molecular machinery governing GABAergic neuron specification in the cerebellum. Cerebellum 5(3):193–198

    Article  CAS  PubMed  Google Scholar 

  49. Hoshino M, Nakamura S, Mori K, Kawauchi T, Terao M, Nishimura YV, Fukuda A, Fuse T, Matsuo N, Sone M, Watanabe M, Bito H, Terashima T, Wright CV, Kawaguchi Y, Nakao K, Nabeshima Y (2005) Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron 47(2):201–213

    Article  CAS  PubMed  Google Scholar 

  50. Nimura T, Itoh T, Hagio H, Hayashi T, Di Donato V, Takeuchi M, Itoh T, Inoguchi F, Sato Y, Yamamoto N, Katsuyama Y, Del Bene F, Shimizu T, Hibi M (2019) Role of Reelin in cell positioning in the cerebellum and the cerebellum-like structure in zebrafish. Dev Biol 455(2):393–408

    Article  CAS  PubMed  Google Scholar 

  51. Landsberg RL, Awatramani RB, Hunter NL, Farago AF, DiPietrantonio HJ, Rodriguez CI, Dymecki SM (2005) Hindbrain rhombic lip is comprised of discrete progenitor cell populations allocated by Pax6. Neuron 48(6):933–947

    Article  CAS  PubMed  Google Scholar 

  52. Kaslin J, Kroehne V, Benato F, Argenton F, Brand M (2013) Development and specification of cerebellar stem and progenitor cells in zebrafish: from embryo to adult. Neural Dev 8:9

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kaslin J, Kroehne V, Ganz J, Hans S, Brand M (2017) Distinct roles of neuroepithelial-like and radial glia-like progenitor cells in cerebellar regeneration. Development 144(8):1462–1471

    CAS  PubMed  Google Scholar 

  54. Takeuchi M, Yamaguchi S, Sakakibara Y, Hayashi T, Matsuda K, Hara Y, Tanegashima C, Shimizu T, Kuraku S, Hibi M (2017) Gene expression profiling of granule cells and Purkinje cells in the zebrafish cerebellum. J Comp Neurol 525(7):1558–1585

    Article  CAS  PubMed  Google Scholar 

  55. Gomez A, Duran E, Salas C, Rodriguez F (2010) Cerebellum lesion impairs eyeblink-like classical conditioning in goldfish. Neuroscience 166(1):49–60

    Article  CAS  PubMed  Google Scholar 

  56. Rodriguez F, Duran E, Gomez A, Ocana FM, Alvarez E, Jimenez-Moya F, Broglio C, Salas C (2005) Cognitive and emotional functions of the teleost fish cerebellum. Brain Res Bull 66(4–6):365–370

    Article  CAS  PubMed  Google Scholar 

  57. Pastor AM, de la Cruz RR, Baker R (1994) Cerebellar role in adaptation of the goldfish vestibuloocular reflex. J Neurophysiol 72(3):1383–1394

    Article  CAS  PubMed  Google Scholar 

  58. Pastor AM, De la Cruz RR, Baker R (1997) Characterization of Purkinje cells in the goldfish cerebellum during eye movement and adaptive modification of the vestibulo-ocular reflex. Prog Brain Res 114:359–381

    Article  CAS  PubMed  Google Scholar 

  59. Mo W, Chen F, Nechiporuk A, Nicolson T (2010) Quantification of vestibular-induced eye movements in zebrafish larvae. BMC Neurosci 11:110

    Article  PubMed  PubMed Central  Google Scholar 

  60. Beck JC, Gilland E, Tank DW, Baker R (2004) Quantifying the ontogeny of optokinetic and vestibuloocular behaviors in zebrafish, medaka, and goldfish. J Neurophysiol 92(6):3546–3561

    Article  PubMed  Google Scholar 

  61. Brockerhoff SE, Hurley JB, Janssen-Bienhold U, Neuhauss SC, Driever W, Dowling JE (1995) A behavioral screen for isolating zebrafish mutants with visual system defects. Proc Natl Acad Sci U S A 92(23):10545–10549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Easter SS Jr, Nicola GN (1996) The development of vision in the zebrafish (Danio rerio). Dev Biol 180(2):646–663

    Article  CAS  PubMed  Google Scholar 

  63. Marsh E, Baker R (1997) Normal and adapted visuooculomotor reflexes in goldfish. J Neurophysiol 77(3):1099–1118

    Article  CAS  PubMed  Google Scholar 

  64. Portugues R, Engert F (2009) The neural basis of visual behaviors in the larval zebrafish. Curr Opin Neurobiol 19(6):644–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ahrens MB, Li JM, Orger MB, Robson DN, Schier AF, Engert F, Portugues R (2012) Brain-wide neuronal dynamics during motor adaptation in zebrafish. Nature 485(7399):471–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Scalise K, Shimizu T, Hibi M, Sawtell NB (2016) Responses of cerebellar Purkinje cells during fictive optomotor behavior in larval zebrafish. J Neurophysiol 116(5):2067–2080

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yoshida M, Hirano R (2010) Effects of local anesthesia of the cerebellum on classical fear conditioning in goldfish. Behav Brain Funct 6:20

    Article  PubMed  PubMed Central  Google Scholar 

  68. Aizenberg M, Schuman EM (2011) Cerebellar-dependent learning in larval zebrafish. J Neurosci 31(24):8708–8712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Valente A, Huang KH, Portugues R, Engert F (2012) Ontogeny of classical and operant learning behaviors in zebrafish. Learn Mem 19(4):170–177

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lin Q, Manley J, Helmreich M, Schlumm F, Li JM, Robson DN, Engert F, Schier A, Nobauer T, Vaziri A (2020) Cerebellar Neurodynamics predict decision timing and outcome on the single-trial level. Cell 180(3):536–551. e517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Apps R, Hawkes R (2009) Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci 10(9):670–681

    Article  CAS  PubMed  Google Scholar 

  72. Tanabe K, Kani S, Shimizu T, Bae YK, Abe T, Hibi M (2010) Atypical protein kinase C regulates primary dendrite specification of cerebellar Purkinje cells by localizing Golgi apparatus. J Neurosci 30(50):16983–16992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. McFarland KA, Topczewska JM, Weidinger G, Dorsky RI, Appel B (2008) Hh and Wnt signaling regulate formation of olig2+ neurons in the zebrafish cerebellum. Dev Biol 318(1):162–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Seto Y, Nakatani T, Masuyama N, Taya S, Kumai M, Minaki Y, Hamaguchi A, Inoue YU, Inoue T, Miyashita S, Fujiyama T, Yamada M, Chapman H, Campbell K, Magnuson MA, Wright CV, Kawaguchi Y, Ikenaka K, Takebayashi H, Ishiwata S, Ono Y, Hoshino M (2014) Temporal identity transition from Purkinje cell progenitors to GABAergic interneuron progenitors in the cerebellum. Nat Commun 5:3337

    Article  PubMed  Google Scholar 

  75. Dohaku R, Yamaguchi M, Yamamoto N, Shimizu T, Osakada F, Hibi M (2019) Tracing of afferent connections in the zebrafish cerebellum using recombinant rabies virus. Front Neural Circuits 13:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Takeuchi M, Yamaguchi S, Yonemura S, Kakiguchi K, Sato Y, Higashiyama T, Shimizu T, Hibi M (2015) Type IV collagen controls the Axogenesis of cerebellar granule cells by regulating basement membrane integrity in zebrafish. PLoS Genet 11(10):e1005587

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hsieh JY, Ulrich B, Issa FA, Wan J, Papazian DM (2014) Rapid development of Purkinje cell excitability, functional cerebellar circuit, and afferent sensory input to cerebellum in zebrafish. Front Neural Circuits 8:147

    Article  PubMed  PubMed Central  Google Scholar 

  78. Chang W, Pedroni A, Hohendorf V, Giacomello S, Hibi M, Koster RW, Ampatzis K (2020) Functionally distinct Purkinje cell types show temporal precision in encoding locomotion. Proc Natl Acad Sci U S A 117(29):17330–17337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Knogler LD, Kist AM, Portugues R (2019) Motor context dominates output from purkinje cell functional regions during reflexive visuomotor behaviours. Elife 8:e42138

    Article  PubMed  PubMed Central  Google Scholar 

  80. Harmon TC, Magaram U, McLean DL, Raman IM (2017) Distinct responses of Purkinje neurons and roles of simple spikes during associative motor learning in larval zebrafish. Elife 6:e22537

    Article  PubMed  PubMed Central  Google Scholar 

  81. Harmon TC, McLean DL, Raman IM (2020) Integration of swimming-related synaptic excitation and inhibition by olig2(+) Eurydendroid neurons in larval zebrafish cerebellum. J Neurosci 40(15):3063–3074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sengupta M, Thirumalai V (2015) AMPA receptor mediated synaptic excitation drives state-dependent bursting in Purkinje neurons of zebrafish larvae. Elife 4:e09158

    Article  PubMed Central  Google Scholar 

  83. Knogler LD, Markov DA, Dragomir EI, Stih V, Portugues R (2017) Sensorimotor representations in cerebellar granule cells in larval zebrafish are dense, spatially organized, and non-temporally patterned. Curr Biol 27(9):1288–1302

    Article  CAS  PubMed  Google Scholar 

  84. Miyazawa H, Okumura K, Hiyoshi K, Maruyama K, Kakinuma H, Amo R, Okamoto H, Yamasu K, Tsuda S (2018) Optical interrogation of neuronal circuitry in zebrafish using genetically encoded voltage indicators. Sci Rep 8(1):6048

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ehrlich DE, Schoppik D (2019) A primal role for the vestibular sense in the development of coordinated locomotion. Elife 8:e45839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sternberg JR, Severi KE, Fidelin K, Gomez J, Ihara H, Alcheikh Y, Hubbard JM, Kawakami K, Suster M, Wyart C (2016) Optimization of a neurotoxin to investigate the contribution of excitatory interneurons to speed modulation in vivo. Curr Biol 26(17):2319–2328

    Article  CAS  PubMed  Google Scholar 

  87. Song KH, Woo SR, Chung JY, Lee HJ, Oh SJ, Hong SO, Shim J, Kim YN, Rho SB, Hong SM, Cho H, Hibi M, Bae DJ, Kim SY, Kim MG, Kim TW, Bae YK (2017) REP1 inhibits FOXO3-mediated apoptosis to promote cancer cell survival. Cell Death Dis 8(1):e2536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Auer TO, Duroure K, De Cian A, Concordet JP, Del Bene F (2014) Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res 24(1):142–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31(3):227–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jao LE, Wente SR, Chen W (2013) Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci U S A 110(34):13904–13909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ota S, Hisano Y, Ikawa Y, Kawahara A (2014) Multiple genome modifications by the CRISPR/Cas9 system in zebrafish. Genes Cells 19(7):555–564

    Article  CAS  PubMed  Google Scholar 

  92. Hoshijima K, Jurynec MJ, Klatt Shaw D, Jacobi AM, Behlke MA, Grunwald DJ (2019) Highly efficient CRISPR-Cas9-based methods for generating deletion mutations and F0 embryos that lack gene function in zebrafish. Dev Cell 51(5):645–657. e644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Di Donato V, De Santis F, Albadri S, Auer TO, Duroure K, Charpentier M, Concordet JP, Gebhardt C, Del Bene F (2018) An attractive Reelin gradient establishes synaptic lamination in the vertebrate visual system. Neuron 97(5):1049–1062. e1046

    Article  PubMed  Google Scholar 

  94. Takeuchi M, Inoue C, Goshima A, Nagao Y, Shimizu K, Miyamoto H, Shimizu T, Hashimoto H, Yonemura S, Kawahara A, Hirata Y, Yoshida M, Hibi M (2017) Medaka and zebrafish contactin1 mutants as a model for understanding neural circuits for motor coordination. Genes Cells 22(8):723–741

    Article  CAS  PubMed  Google Scholar 

  95. Kimura Y, Hisano Y, Kawahara A, Higashijima S (2014) Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering. Sci Rep 4:6545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ota S, Taimatsu K, Yanagi K, Namiki T, Ohga R, Higashijima SI, Kawahara A (2016) Functional visualization and disruption of targeted genes using CRISPR/Cas9-mediated eGFP reporter integration in zebrafish. Sci Rep 6:34991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cong L, Wang Z, Chai Y, Hang W, Shang C, Yang W, Bai L, Du J, Wang K, Wen Q (2017) Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio). Elife 6:e28158

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kimura Y, Satou C, Fujioka S, Shoji W, Umeda K, Ishizuka T, Yawo H, Higashijima S (2013) Hindbrain V2a neurons in the excitation of spinal locomotor circuits during zebrafish swimming. Curr Biol 23(10):843–849

    Article  CAS  PubMed  Google Scholar 

  99. Muto A, Ohkura M, Abe G, Nakai J, Kawakami K (2013) Real-time visualization of neuronal activity during perception. Curr Biol 23(4):307–311

    Article  CAS  PubMed  Google Scholar 

  100. Koyama W, Hosomi R, Matsuda R, Kawakami K, Hibi M, Shimizu T (2021) Invovement of cerebellar neural circuits in active avoidanc conditioning in zebrafish. eNeuro 8(3):ENEURO.0507-20.2021

    Google Scholar 

  101. Namikawa K, Dorigo A, Zagrebelsky M, Russo G, Kirmann T, Fahr W, Dubel S, Korte M, Koster RW (2019) Modeling neurodegenerative spinocerebellar ataxia type 13 in zebrafish using a Purkinje neuron specific tunable Coexpression system. J Neurosci 39(20):3948–3969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Courchesne E, Yeung-Courchesne R, Press GA, Hesselink JR, Jernigan TL (1988) Hypoplasia of cerebellar vermal lobules VI and VII in autism. N Engl J Med 318(21):1349–1354

    Article  CAS  PubMed  Google Scholar 

  103. Fatemi SH, Halt AR, Realmuto G, Earle J, Kist DA, Thuras P, Merz A (2002) Purkinje cell size is reduced in cerebellum of patients with autism. Cell Mol Neurobiol 22(2):171–175

    Article  PubMed  Google Scholar 

  104. Wang SS, Kloth AD, Badura A (2014) The cerebellum, sensitive periods, and autism. Neuron 83(3):518–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Skefos J, Cummings C, Enzer K, Holiday J, Weed K, Levy E, Yuce T, Kemper T, Bauman M (2014) Regional alterations in purkinje cell density in patients with autism. PLoS One 9(2):e81255

    Article  PubMed  PubMed Central  Google Scholar 

  106. Steinlin M (2008) Cerebellar disorders in childhood: cognitive problems. Cerebellum 7(4):607–610

    Article  PubMed  Google Scholar 

  107. Tsai PT, Hull C, Chu Y, Greene-Colozzi E, Sadowski AR, Leech JM, Steinberg J, Crawley JN, Regehr WG, Sahin M (2012) Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 488(7413):647–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ruzzo EK, Perez-Cano L, Jung JY, Wang LK, Kashef-Haghighi D, Hartl C, Singh C, Xu J, Hoekstra JN, Leventhal O, Leppa VM, Gandal MJ, Paskov K, Stockham N, Polioudakis D, Lowe JK, Prober DA, Geschwind DH, Wall DP (2019) Inherited and de novo genetic risk for autism impacts shared networks. Cell 178(4):850–866.e26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Stednitz SJ, McDermott EM, Ncube D, Tallafuss A, Eisen JS, Washbourne P (2018) Forebrain control of behaviorally driven social orienting in zebrafish. Curr Biol 28(15):2445–2451.e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Dreosti E, Lopes G, Kampff AR, Wilson SW (2015) Development of social behavior in young zebrafish. Front Neural Circuits 9:39

    Article  PubMed  PubMed Central  Google Scholar 

  111. Haug MF, Gesemann M, Mueller T, Neuhauss SC (2013) Phylogeny and expression divergence of metabotropic glutamate receptor genes in the brain of zebrafish (Danio rerio). J Comp Neurol 521(7):1533–1560

    Article  CAS  PubMed  Google Scholar 

  112. Itoh T, Takeuchi M, Sakagami M, Asakawa K, Sumiyama K, Kawakami K, Shimizu T, Hibi M (2020) Gsx2 is required for specification of neurons in the inferior olivary nuclei from Ptf1a-expressing neural progenitors in zebrafish. Development 147(19):dev190603

    Google Scholar 

  113. Mikami Y, Yoshida T, Matsuda N, Mishina M (2004) Expression of zebrafish glutamate receptor delta2 in neurons with cerebellum-like wiring. Biochem Biophys Res Commun 322(1):168–176

    Article  CAS  PubMed  Google Scholar 

  114. Obholzer N, Wolfson S, Trapani JG, Mo W, Nechiporuk A, Busch-Nentwich E, Seiler C, Sidi S, Sollner C, Duncan RN, Boehland A, Nicolson T (2008) Vesicular glutamate transporter 3 is required for synaptic transmission in zebrafish hair cells. J Neurosci 28(9):2110–2118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Umeda K, Shoji W, Sakai S, Muto A, Kawakami K, Ishizuka T, Yawo H (2013) Targeted expression of a chimeric channelrhodopsin in zebrafish under regulation of Gal4-UAS system. Neurosci Res 75(1):69–75

    Article  CAS  PubMed  Google Scholar 

  116. Tabor KM, Bergeron SA, Horstick EJ, Jordan DC, Aho V, Porkka-Heiskanen T, Haspel G, Burgess HA (2014) Direct activation of the Mauthner cell by electric field pulses drives ultrarapid escape responses. J Neurophysiol 112(4):834–844

    Article  PubMed  PubMed Central  Google Scholar 

  117. Harada H, Sato T, Nakamura H (2016) Fgf8 signaling for development of the midbrain and hindbrain. Develop Growth Differ 58(5):437–445

    Article  CAS  Google Scholar 

  118. Martinez S, Andreu A, Mecklenburg N, Echevarria D (2013) Cellular and molecular basis of cerebellar development. Front Neuroanat 7:18

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank past and current members of the Hibi Laboratory for their contribution to the works cited here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Hibi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hibi, M., Shimizu, T. (2022). From Cerebellar Genes to Behaviors in Zebrafish. In: Sillitoe, R.V. (eds) Measuring Cerebellar Function. Neuromethods, vol 177. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2026-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2026-7_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2025-0

  • Online ISBN: 978-1-0716-2026-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics