Skip to main content

Simple Extract Preparation Methods for E. coli-Based Cell-Free Expression

  • Protocol
  • First Online:
Cell-Free Gene Expression

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2433))

Abstract

Cell-free protein synthesis (CFPS) is a powerful platform for synthetic biology, allowing for the controlled expression of proteins without reliance on living cells. However, the process of producing the cell extract, a key component of cell-free reactions, can be a bottleneck for new users to adopt CFPS as it requires technical knowledge and significant researcher oversight. Here, we provide a detailed method for implementing a simplified cell extract preparation workflow using CFAI media. We also provide a detailed protocol for the alternative, 2x YPTG media-based preparation process, as it represents a useful benchmark within the cell-free community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gregorio NE, Levine MZ, Oza JP (2019) A User’s guide to cell-free protein synthesis. Methods Protoc 2(1):24. https://doi.org/10.3390/mps2010024

    Article  CAS  PubMed Central  Google Scholar 

  2. Silverman AD, Karim AS, Jewett MC (2020) Cell-free gene expression: an expanded repertoire of applications. Nat Rev Genet 21:151–170. https://doi.org/10.1038/s41576-019-0186-3

    Article  CAS  PubMed  Google Scholar 

  3. Benítez-Mateos AI, Llarena I, Sánchez-Iglesias A, López-Gallego F (2018) Expanding one-pot cell-free protein synthesis and immobilization for on-demand manufacturing of biomaterials. ACS Synth Biol 7(3):875–884. https://doi.org/10.1021/acssynbio.7b00383

    Article  CAS  PubMed  Google Scholar 

  4. Hong SH, Kwon Y-C, Jewett MC (2014) Non-standard amino acid incorporation into proteins using Escherichia coli cell-free protein synthesis. Front Chem 2:34. https://doi.org/10.3389/fchem.2014.00034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thavarajah W, Silverman AD, Verosloff MS, Kelley-Loughnane N, Jewett MC, Lucks JB (2020) Point-of-use detection of environmental fluoride via a cell-free riboswitch-based biosensor. ACS Synth Biol 9(1):10–18. https://doi.org/10.1021/acssynbio.9b00347

    Article  CAS  PubMed  Google Scholar 

  6. Chong S (2014) Overview of cell-free protein synthesis: historic landmarks, commercial systems, and expanding applications. Curr Protoc Mol Biol 108(1):16.30.1–16.30.11. https://doi.org/10.1002/0471142727.mb1630s108

    Article  Google Scholar 

  7. Oza JP, Aerni HR, Pirman NL, Barber KW, ter Haar CM, Rogulina S, Amrofell MB, Isaacs FJ, Rinehart J, Jewett MC (2015) Robust production of recombinant phosphoproteins using cell-free protein synthesis. Nat Commun 6:8168. https://doi.org/10.1038/ncomms9168

    Article  PubMed  Google Scholar 

  8. Bundy, Bradley C., Marc J. Franciszkowicz, and James R. Swartz. 2008. Escherichia coli-based cell-free synthesis of virus-like particles. Biotechnol Bioeng 100 (1): 28–37. https://doi.org/10.1002/bit.21716

  9. Rustad M, Eastlund A, Jardine P, Noireaux V (2018) Cell-free TXTL synthesis of infectious bacteriophage T4 in a single test tube reaction. Synth Biol 3(1):ysy002. https://doi.org/10.1093/synbio/ysy002

    Article  CAS  Google Scholar 

  10. Dopp JL, Tamiev DD, Reuel NF (2019) Cell-free supplement mixtures: elucidating the history and biochemical utility of additives used to support in vitro protein synthesis in E. coli extract. Biotechnol Adv 37(1):246–258. https://doi.org/10.1016/j.biotechadv.2018.12.006

    Article  CAS  PubMed  Google Scholar 

  11. Goerke AR, Swartz JR (2008) Development of cell-free protein synthesis platforms for disulfide bonded proteins. Biotechnol Bioeng 99(2):351–367. https://doi.org/10.1002/bit.21567

    Article  CAS  PubMed  Google Scholar 

  12. Martin RW, Majewska NI, Chen CX, Albanetti TE, Jimenez RBC, Schmelzer AE, Jewett MC, Roy V (2017) Development of a CHO-based cell-free platform for synthesis of active monoclonal antibodies. ACS Synth Biol 6(7):1370–1379. https://doi.org/10.1021/acssynbio.7b00001

    Article  CAS  PubMed  Google Scholar 

  13. Stech M, Nikolaeva O, Thoring L, Stocklein WFM, Wustenhagen DA, Hust M, Dubel S, Kubick S (2017) Cell-free synthesis of functional antibodies using a coupled in vitro transcription-translation system based on CHO cell lysates. Sci Rep 7:12030. https://doi.org/10.1038/s41598-017-12364-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yin G, Garces ED, Yang J, Zhang J, Tran C, Steiner AR, Roos C, Bajad S, Hudak S, Penta K, Zawada J, Pollitt S, Murray CJ (2012) Aglycosylated antibodies and antibody fragments produced in a scalable in vitro transcription-translation system. mAbs 4:217–225. https://doi.org/10.4161/mabs.4.2.19202

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zimmerman ES, Heibeck TH, Gill A, Li X, Murray CJ, Madlansacay MR, Tran C et al (2014) Production of site-specific antibody-drug conjugates using optimized non-natural amino acids in a cell-free expression system. Bioconjug Chem 25(2):351–361. https://doi.org/10.1021/bc400490z

    Article  CAS  PubMed  Google Scholar 

  16. Williams LC, Gregorio NE, So B, Kao WY, Kiste AL, Patel PA, Watts KR, Oza JP (2020) The genetic code kit: an open-source cell-free platform for biochemical and biotechnology education. Front Bioeng Biotechnol 8:941. https://doi.org/10.3389/fbioe.2020.00941

    Article  PubMed  PubMed Central  Google Scholar 

  17. Stark JC, Huang A, Nguyen PQ, Dubner RS, Hsu KJ, Ferrante TC, Anderson M et al (2018) BioBitsâ„¢ bright: a fluorescent synthetic biology education kit. Sci Adv 4(8):eaat5107. https://doi.org/10.1126/sciadv.aat5107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kwon Y-C, Jewett MC (2015) High-throughput preparation methods of crude extract for robust cell-free protein synthesis. Sci Rep 5:8663. https://doi.org/10.1038/srep08663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shrestha P, Holland TM, Bundy BC (2018) Streamlined extract preparation for Escherichia coli-based cell-free protein synthesis by sonication or bead vortex mixing. BioTechniques 53(3):163–174. https://doi.org/10.2144/0000113924

    Article  CAS  Google Scholar 

  20. Levine MZ, Gregorio NE, Jewett MC, Watts KR, Oza JP (2019) Escherichia coli-based cell-free protein synthesis: protocols for a robust, flexible, and accessible platform technology. J Vis Exp. https://doi.org/10.3791/58882

  21. Levine MZ, So B, Mullin AC, Fanter R, Dillard K, Watts KR, La Frano MR, Oza JP (2020) Activation of energy metabolism through growth media reformulation enables a 24-hour workflow for cell-free expression. ACS Synth Biol 9(10):2765–2774. https://doi.org/10.1021/acssynbio.0c00283

    Article  CAS  PubMed  Google Scholar 

  22. Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41:207–234

    Article  CAS  Google Scholar 

  23. Davis WW, Stout TR (1971) Disc plate method of microbiological antibiotic assay. Appl Microbiol 22(4):666–670

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Special thanks to our lab mates, Philip Smith and Byungcheol So for their support and feedback. All figures were created with BioRender.com. This work was supported by the Bill and Linda Frost Fund, Center for Applications in Biotechnology’s Chevron Biotechnology Applied Research Endowment Grant, and the National Science Foundation (NSF-1708919).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javin P. Oza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mullin, A.C., Slouka, T., Oza, J.P. (2022). Simple Extract Preparation Methods for E. coli-Based Cell-Free Expression. In: Karim, A.S., Jewett, M.C. (eds) Cell-Free Gene Expression. Methods in Molecular Biology, vol 2433. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1998-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1998-8_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1997-1

  • Online ISBN: 978-1-0716-1998-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics