Skip to main content

Accurate Measurement of DNA Methylation: Challenges and Bias Correction

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2432))

Abstract

DNA methylation is a key epigenetic modification involved in gene regulation whose contribution to disease susceptibility is still not fully understood. As the cost of genome sequencing technologies continues to drop, it will soon become commonplace to perform genome-wide quantification of DNA methylation at a single base-pair resolution. However, the demand for its accurate quantification might vary across studies. When the scope of the analysis is to detect regions of the genome with different methylation patterns between two or more conditions, e.g., case vs control; treatments vs placebo, accuracy is not crucial. This is the case in epigenome-wide association studies used as genome-wide screening of methylation changes to detect new candidate genes and regions associated with a specific disease or condition. If the aim of the analysis is to use DNA methylation measurements as a biomarker for diseases diagnosis and treatment (Laird, Nat Rev Cancer 3:253–266, 2003; Bock, Epigenomics 1:99–110, 2009), it is instead recommended to produce accurate methylation measurements. Furthermore, if the objective is the detection of DNA methylation in subclonal tumor cell populations or in circulating tumor DNA or in any case of mosaicism, the importance of accuracy becomes critical. The aim of this chapter is to describe the factors that could affect the precise measurement of methylation levels and a recent Bayesian statistical method called MethylCal and its extension that have been proposed to minimize this problem.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Laird PW (2003) The power and the promise of DNA methylation markers. Nat Rev Cancer 3:253–266. https://doi.org/10.1038/nrc1045

    Article  CAS  PubMed  Google Scholar 

  2. Bock C (2009) Epigenetic biomarker development. Epigenomics 1:99–110. https://doi.org/10.2217/epi.09.6

    Article  CAS  PubMed  Google Scholar 

  3. Shapiro R, Weisgras JM (1970) Bisulfite-catalyzed transamination of cytosine and cytidine. Biochem Biophys Res Commun 40:839–843. https://doi.org/10.1016/0006-291X(70)90979-4

    Article  CAS  PubMed  Google Scholar 

  4. Hayatsu H, Wataya Y, Kai K (1970) The addition of sodium bisulfite to uracil and to cytosine. J Am Chem Soc 92:724–726. https://doi.org/10.1021/ja00706a062

    Article  CAS  PubMed  Google Scholar 

  5. Wang RYH, Gehrke CW, Ehrlich M (1980) Comparison of bisulfite modification of 5-methyldeoxycytidine and deoxycytidine residues. Nucleic Acids Res 8:4777–4790. https://doi.org/10.1093/nar/8.20.4777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89:1827–1831. https://doi.org/10.1073/pnas.89.5.1827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yu H, Hahn Y, Yang I (2015) Reference materials for calibration of analytical biases in quantification of DNA methylation. PLoS One 10:8–19. https://doi.org/10.1371/journal.pone.0137006

    Article  CAS  Google Scholar 

  8. Masser DR, Berg AS, Freeman WM (2013) Focused, high accuracy 5-methylcytosine quantitation with base resolution by benchtop next-generation sequencing. Epigenetics Chromatin 6:1. https://doi.org/10.1186/1756-8935-6-33

    Article  CAS  Google Scholar 

  9. Warnecke PM, Stirzaker C, Melki JR, Millar DS, Paul CL, Clark SJ (1997) Detection and measurement of PCR bias in quantitative methylation analysis of bisulphite-treated DNA. Nucleic Acids Res 25:4422–4426. https://doi.org/10.1093/nar/25.21.4422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wojdacz TK, Borgbo T, Hansen LL (2009) Primer design versus PCR bias in methylation independent PCR amplifications. Epigenetics 4:231–234. https://doi.org/10.4161/epi.9020

    Article  CAS  PubMed  Google Scholar 

  11. Wojdacz TK, Hansen LL, Dobrovic A (2008) A new approach to primer design for the control of PCR bias in methylation studies. BMC Res Notes 1:3–5. https://doi.org/10.1186/1756-0500-1-54

    Article  CAS  Google Scholar 

  12. Moskalev EA, Zavgorodnij MG, Majorova SP, Vorobjev IA, Jandaghi P, Bure IV, Hoheisel JD (2011) Correction of PCR-bias in quantitative DNA methylation studies by means of cubic polynomial regression. Nucleic Acids Res 39. https://doi.org/10.1093/nar/gkr213

  13. Ochoa E, Zuber V, Fernandez-Jimenez N, Bilbao JR, Clark GR, Maher ER, Bottolo L (2019) MethylCal: Bayesian calibration of methylation levels. Nucleic Acids Res 47:e81. https://doi.org/10.1093/nar/gkz325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rother KI, Silke J, Georgiev O, Schaffner W, Matsuo K (1995) Influence of DNA sequence and methylation status on bisulfite conversion of cytosine residues. Anal Biochem 231:263–265. https://doi.org/10.1006/abio.1995.1530

    Article  CAS  PubMed  Google Scholar 

  15. Zhao J, Bacolla A, Wang G, Vasquez KM (2010) Non-B DNA structure-induced genetic instability and evolution. Cell Mol Life Sci 67:43–62. https://doi.org/10.1007/s00018-009-0131-2

    Article  CAS  PubMed  Google Scholar 

  16. Clark J, Smith SS (2008) Secondary structure at a hot spot for DNA methylation in DNA from human breast cancers. Cancer Genomics Proteomics 5:241–252

    CAS  PubMed  Google Scholar 

  17. Bacolla A, Cooper DN, Vasquez KM, Tainer JA (2018) Non-B DNA structure and mutations causing human genetic disease. In: eLS. Wiley, pp 1–15

    Google Scholar 

  18. Bacolla A, Wells RD (2009) Non-B DNA conformations as determinants of mutagenesis and human disease. Mol Carcinog 48:273–285. https://doi.org/10.1002/mc.20507

    Article  CAS  PubMed  Google Scholar 

  19. Walter J, Hutter B, Khare T, Paulsen M (2006) Repetitive elements in imprinted genes. Cytogenet Genome Res 113:109–115. https://doi.org/10.1159/000090821

    Article  CAS  PubMed  Google Scholar 

  20. Ziller MJ, Gu H, Müller F, Donaghey J, Tsai LTY, Kohlbacher O, De Jager PL, Rosen ED, Bennett DA, Bernstein BE, Gnirke A, Meissner A (2013) Charting a dynamic DNA methylation landscape of the human genome. Nature 500:477–481. https://doi.org/10.1038/nature12433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou L, Ng HK, Drautz-Moses DI, Schuster SC, Beck S, Kim C, Chambers JC, Loh M (2019) Systematic evaluation of library preparation methods and sequencing platforms for high-throughput whole genome bisulfite sequencing. Sci Rep 9:1–16. https://doi.org/10.1038/s41598-019-46875-5

    Article  CAS  Google Scholar 

  22. Ziller MJ, Hansen KD, Meissner A, Aryee MJ (2015) Coverage recommendations for methylation analysis by whole-genome bisulfite sequencing. Nat Methods 12:230–232. https://doi.org/10.1038/nmeth.3152

    Article  CAS  PubMed  Google Scholar 

  23. Zhang W, Spector TD, Deloukas P, Bell JT, Engelhardt BE (2015) Predicting genome-wide DNA methylation using methylation marks, genomic position, and DNA regulatory elements. Genome Biol 16. https://doi.org/10.1186/s13059-015-0581-9

  24. (2006) Linear mixed-effects models: basic concepts and examples. In: Mixed-effects models in S and S-PLUS. Springer-Verlag, pp 3–56

    Google Scholar 

  25. Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J R Stat Soc Ser B Stat Methodol 71:319–392. https://doi.org/10.1111/j.1467-9868.2008.00700.x

    Article  Google Scholar 

  26. Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc Ser B Stat Methodol 64:583–616. https://doi.org/10.1111/1467-9868.00353

    Article  Google Scholar 

  27. Monk D, Mackay DJG, Eggermann T, Maher ER, Riccio A (2019) Genomic imprinting disorders: lessons on how genome, epigenome and environment interact. Nat Rev Genet 20:235–248. https://doi.org/10.1038/s41576-018-0092-0

    Article  CAS  PubMed  Google Scholar 

  28. Claus R, Lucas DM, Ruppert AS, Williams KE, Weng D, Patterson K, Zucknick M, Oakes CC, Rassenti LZ, Greaves AW, Geyer S, Wierda WG, Brown JR, Gribben JG, Barrientos JC, Rai KR, Kay NE, Kipps TJ, Shields P, Zhao W, Grever MR, Plass C, Byrd JC (2014) Validation of ZAP-70 methylation and its relative significance in predicting outcome in chronic lymphocytic leukemia. Blood 124:42–48. https://doi.org/10.1182/blood-2014-02-555722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. DeVos T, Tetzner R, Model F, Weiss G, Schuster M, Distler J, Steiger KV, Grützmann R, Pilarsky C, Habermann JK, Fleshner PR, Oubre BM, Day R, Sledziewski AZ, Lofton-Day C (2009) Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer. Clin Chem 55:1337–1346. https://doi.org/10.1373/clinchem.2008.115808

    Article  CAS  PubMed  Google Scholar 

  30. Giovannetti E, Codacci-Pisanelli G, Peters GJ (2012) TFAP2E-DKK4 and chemoresistance in colorectal cancer. N Engl J Med 366:966. https://doi.org/10.1056/NEJMc1201170

    Article  CAS  PubMed  Google Scholar 

  31. Hegi ME, Diserens AC, Gorlia T, Hamou MF, De Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JEC, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, Stupp R (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003. https://doi.org/10.1056/NEJMoa043331

    Article  CAS  PubMed  Google Scholar 

  32. Queirós AC, Villamor N, Clot G, Martinez-Trillos A, Kulis M, Navarro A, Penas EMM, Jayne S, Majid A, Richter J, Bergmann AK, Kolarova J, Royo C, Russiñol N, Castellano G, Pinyol M, Bea S, Salaverria I, López-Guerra M, Colomer D, Aymerich M, Rozman M, Delgado J, Giné E, González-Díaz M, Puente XS, Siebert R, Dyer MJS, López-Otín C, Rozman C, Campo E, López-Guillermo A, Martín-Subero JI (2015) A B-cell epigenetic signature defines three biologic subgroups of chronic lymphocytic leukemia with clinical impact. Leukemia 29:598–605. https://doi.org/10.1038/leu.2014.252

    Article  CAS  PubMed  Google Scholar 

  33. Papageorgiou EA, Karagrigoriou A, Tsaliki E, Velissariou V, Carter NP, Patsalis PC (2011) Fetal-specific DNA methylation ratio permits noninvasive prenatal diagnosis of trisomy 21. Nat Med 17:510–513. https://doi.org/10.1038/nm.2312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. McDermott E, Ryan EJ, Tosetto M, Gibson D, Burrage J, Keegan D, Byrne K, Crowe E, Sexton G, Malone K, Harris RA, Kellermayer R, Mill J, Cullen G, Doherty GA, Mulcahy H, Murphy TM (2016) DNA methylation profiling in inflammatory bowel disease provides new insights into disease pathogenesis. J Crohns Colitis 10:77–86. https://doi.org/10.1093/ecco-jcc/jjv176

    Article  PubMed  Google Scholar 

  35. Imgenberg-Kreuz J, Almlöf JC, Leonard D, Sjöwall C, Syvänen AC, Rönnblom L, Sandling JK, Nordmark G (2019) Shared and unique patterns of DNA methylation in systemic lupus erythematosus and primary Sjögren’s syndrome. Front Immunol 10:1686. https://doi.org/10.3389/fimmu.2019.01686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fernandez-Jimenez N, Garcia-Etxebarria K, Plaza-Izurieta L, Romero-Garmendia I, Jauregi-Miguel A, Legarda M, Ecsedi S, Castellanos-Rubio A, Cahais V, Cuenin C, Degli Esposti D, Irastorza I, Hernandez-Vargas H, Herceg Z, Bilbao JR (2019) The methylome of the celiac intestinal epithelium harbours genotype-independent alterations in the HLA region. Sci Rep 9:1–13. https://doi.org/10.1038/s41598-018-37746-6

    Article  CAS  Google Scholar 

  37. Maher ER, Reik W (2000) Beckwith-Wiedemann syndrome: imprinting in clusters revisited. J Clin Invest 105:247–252

    Article  CAS  Google Scholar 

  38. Lea AJ, Tung J, Zhou X (2015) A flexible, efficient binomial mixed model for identifying differential DNA methylation in bisulfite sequencing data. PLoS Genet 11(11):e1005650. https://doi.org/10.1371/journal.pgen.1005650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jin Z, Liu Y (2018) DNA methylation in human diseases. Genes Dis 5:1–8. https://doi.org/10.1016/j.gendis.2018.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu Y, Aryee MJ, Padyukov L, Fallin MD, Hesselberg E, Runarsson A, Reinius L, Acevedo N, Taub M, Ronninger M, Shchetynsky K, Scheynius A, Kere J, Alfredsson L, Klareskog L, Ekström TJ, Feinberg AP (2013) Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol 31:142–147. https://doi.org/10.1038/nbt.2487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dick KJ, Nelson CP, Tsaprouni L, Sandling JK, Aïssi D, Wahl S, Meduri E, Morange PE, Gagnon F, Grallert H, Waldenberger M, Peters A, Erdmann J, Hengstenberg C, Cambien F, Goodall AH, Ouwehand WH, Schunkert H, Thompson JR, Spector TD, Gieger C, Trégouët DA, Deloukas P, Samani NJ (2014) DNA methylation and body-mass index: a genome-wide analysis. Lancet 383:1990–1998. https://doi.org/10.1016/S0140-6736(13)62674-4

    Article  CAS  PubMed  Google Scholar 

  42. Andrews SV, Ellis SE, Bakulski KM, Sheppard B, Croen LA, Hertz-Picciotto I, Newschaffer CJ, Feinberg AP, Arking DE, Ladd-Acosta C, Fallin MD (2017) Cross-tissue integration of genetic and epigenetic data offers insight into autism spectrum disorder. Nat Commun 8:1–10. https://doi.org/10.1038/s41467-017-00868-y

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Alan Turing Institute under the Engineering and Physical Sciences Research Council [EP/N510129/1 to L.B.]. The authors thank Jose Ramon Bilbao for providing the celiac data as well as Nora Fernandez-Jimenez and Eamonn Maher for useful discussion regarding the results of the celiac data and mosaic Beckwith–Wiedemann syndrome.

Conflict of Interest

The views expressed are those of the authors and not necessarily those of the NHS or Department of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Bottolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ochoa, E., Zuber, V., Bottolo, L. (2022). Accurate Measurement of DNA Methylation: Challenges and Bias Correction. In: Guan, W. (eds) Epigenome-Wide Association Studies. Methods in Molecular Biology, vol 2432. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1994-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1994-0_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1993-3

  • Online ISBN: 978-1-0716-1994-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics