Skip to main content

Proximity Ligation Assay (PLA)

  • Protocol
  • First Online:
Immunohistochemistry and Immunocytochemistry

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2422))

Abstract

Proximity ligation assay (PLA), also referred to as Duolink® PLA technology, permits detection of protein–protein interactions in situ (<40 nm distance) at endogenous protein levels. It exploits specific antibodies identifying (either directly or indirectly) the two proteins of interest and takes advantage of specific DNA primers covalently linked to the antibodies. A hybridization step followed by a PCR amplification with fluorescent probes then permits visualization of spots of proximity by fluorescence microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Braun P, Gingras AC (2012) History of protein-protein interactions: from egg-white to complex networks. Proteomics 12:1478–1498

    Article  CAS  Google Scholar 

  2. Lee C (2007) Coimmunoprecipitation assay. Methods Mol Biol 362:401–406

    Article  CAS  Google Scholar 

  3. Cheng PC (2006) The contrast formation in optical microscopy. In: Pawley JB (ed) Handbook of biological confocal microscopy. Springer, Boston, MA, pp 162–206

    Chapter  Google Scholar 

  4. Zheng J (2006) Spectroscopy-based quantitative fluorescence resonance energy transfer analysis. In: Stockand JD, Shapiro MS (eds) Ion channels: methods and protocols. Humana Press, Totowa, NJ, pp 65–77

    Chapter  Google Scholar 

  5. Fredriksson S, Gullberg M, Jarvius J, Olsson C, Pietras K, Gústafsdóttir SM, Ostman A, Landegren U (2002) Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol 20:473–477

    Article  CAS  Google Scholar 

  6. Gullberg M, Gústafsdóttir SM, Schallmeiner E, Jarvius J, Bjarnegård M, Betsholtz C, Landegren U, Fredriksson S (2004) Cytokine detection by antibody-based proximity ligation. Proc Natl Acad Sci U S A 101:8420–8424

    Article  CAS  Google Scholar 

  7. Söderberg O, Gullberg M, Jarvius M, Ridderstråle K, Leuchowius KJ, Jarvius J, Wester K, Hydbring P, Bahram F, Larsson LG, Landegren U (2006) Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 3:995–1000

    Article  Google Scholar 

  8. Berggård T, Linse S, James P (2007) Methods for the detection and analysis of protein-protein interactions. Proteomics 7:2833–2842

    Article  Google Scholar 

  9. Gould KL, Ren L, Feoktistova AS, Jennings JL, Link AJ (2004) Tandem affinity purification and identification of protein complex components. Methods 33:239–244

    Article  CAS  Google Scholar 

  10. Collins SR, Kemmeren P, Zhao XC, Greenblatt JF, Spencer F, Holstege FC, Weissman JS, Krogan NJ (2007) Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Mol Cell Proteomics 6:439–450

    Article  CAS  Google Scholar 

  11. Phizicky EM, Fields S (1995) Protein-protein interactions: methods for detection and analysis. Microbiol Rev 59:94–123

    Article  CAS  Google Scholar 

  12. Sekar RB, Periasamy A (2003) Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J Cell Biol 160:629–633

    Article  CAS  Google Scholar 

  13. Kremers GJ, Goedhart J, van Munster EB, Gadella TW (2006) Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET Förster radius. Biochemistry 45:6570–6580

    Article  CAS  Google Scholar 

  14. Leavesley SJ, Rich TC (2016) Overcoming limitations of FRET measurements. Cytometry A 89:325–327

    Article  Google Scholar 

  15. Klaesson A, Grannas K, Ebai T, Heldin J, Koos B, Leino M, Raykova D, Oelrich J, Arngården L, Söderberg O, Landegren U (2018) Improved efficiency of in situ protein analysis by proximity ligation using UnFold probes. Sci Rep 8:5400

    Article  Google Scholar 

Internet Resources

Download references

Acknowledgments

This work was supported by the Intramural Research Program of the Center for Cancer Research, National Cancer Institute, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad S. Alam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Alam, M.S. (2022). Proximity Ligation Assay (PLA) . In: Del Valle, L. (eds) Immunohistochemistry and Immunocytochemistry. Methods in Molecular Biology, vol 2422. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1948-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1948-3_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1947-6

  • Online ISBN: 978-1-0716-1948-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics