Skip to main content

Data-Independent Acquisition Mass Spectrometry-Based Deep Proteome Analysis for Hydrophobic Proteins from Dried Blood Spots Enriched by Sodium Carbonate Precipitation

  • Protocol
  • First Online:
Clinical Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2420))

Abstract

Dried blood spots (DBS) are widely used for screening molecular profiles, including enzymatic activity. However, hydrophilic proteins present in large amounts in blood inhibit detection of other proteins in DBS by liquid chromatography-mass spectrometry (LC-MS/MS) without preenrichment. Sodium carbonate precipitation (SCP) can concentrate hydrophobic proteins from DBS and effectively remove soluble hydrophilic proteins. Furthermore, SCP combination with data-independent acquisition (DIA) for quantitative LC-MS/MS enhanced the proteome analysis sensitivity and quantification limits. In this protocol, we have described in detail a simple preenrichment method using SCP and a deep proteome analysis method for LC-MS/MS data using DIA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. McDade TW, Williams S, Snodgrass JJ (2007) What a drop can do: dried blood spots as a minimally invasive method for integrating biomarkers into population-based research. Demography 44(4):899–925. https://doi.org/10.1353/dem.2007.0038

    Article  PubMed  Google Scholar 

  2. Deglon J, Thomas A, Mangin P, Staub C (2012) Direct analysis of dried blood spots coupled with mass spectrometry: concepts and biomedical applications. Anal Bioanal Chem 402(8):2485–2498. https://doi.org/10.1007/s00216-011-5161-6

    Article  CAS  PubMed  Google Scholar 

  3. Li W, Tse FL (2010) Dried blood spot sampling in combination with LC-MS/MS for quantitative analysis of small molecules. Biomed Chromatogr 24(1):49–65. https://doi.org/10.1002/bmc.1367

    Article  CAS  PubMed  Google Scholar 

  4. Keevil BG (2011) The analysis of dried blood spot samples using liquid chromatography tandem mass spectrometry. Clin Biochem 44(1):110–118. https://doi.org/10.1016/j.clinbiochem.2010.06.014

    Article  CAS  PubMed  Google Scholar 

  5. Martin NJ, Bunch J, Cooper HJ (2013) Dried blood spot proteomics: surface extraction of endogenous proteins coupled with automated sample preparation and mass spectrometry analysis. J Am Soc Mass Spectrom 24(8):1242–1249. https://doi.org/10.1007/s13361-013-0658-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rosting C, Yu J, Cooper HJ (2018) High field asymmetric waveform ion mobility spectrometry in nontargeted bottom-up proteomics of dried blood spots. J Proteome Res 17(6):1997–2004. https://doi.org/10.1021/acs.jproteome.7b00746

    Article  CAS  PubMed  Google Scholar 

  7. Qian WJ, Kaleta DT, Petritis BO, Jiang H, Liu T, Zhang X et al (2008) Enhanced detection of low abundance human plasma proteins using a tandem IgY12-SuperMix immunoaffinity separation strategy. Mol Cell Proteomics 7(10):1963–1973. https://doi.org/10.1074/mcp.M800008-MCP200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Das S, Bosley AD, Ye X, Chan KC, Chu I, Green JE et al (2010) Comparison of strong cation exchange and SDS-PAGE fractionation for analysis of multiprotein complexes. J Proteome Res 9(12):6696–6704. https://doi.org/10.1021/pr100843x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Camerini S, Mauri P (2015) The role of protein and peptide separation before mass spectrometry analysis in clinical proteomics. J Chromatogr A 1381:1–12. https://doi.org/10.1016/j.chroma.2014.12.035

    Article  CAS  PubMed  Google Scholar 

  10. Nakajima D, Kawashima Y, Shibata H, Yasumi T, Isa M, Izawa K et al (2020) Simple and sensitive analysis for dried blood spot proteins by sodium carbonate precipitation for clinical proteomics. J Proteome Res 19(7):2821–2827. https://doi.org/10.1021/acs.jproteome.0c00271

    Article  CAS  PubMed  Google Scholar 

  11. Cao L, Clifton JG, Reutter W, Josic D (2013) Mass spectrometry-based analysis of rat liver and hepatocellular carcinoma Morris hepatoma 7777 plasma membrane proteome. Anal Chem 85(17):8112–8120. https://doi.org/10.1021/ac400774g

    Article  CAS  PubMed  Google Scholar 

  12. Kim H, Botelho SC, Park K, Kim H (2015) Use of carbonate extraction in analyzing moderately hydrophobic transmembrane proteins in the mitochondrial inner membrane. Protein Sci 24(12):2063–2069. https://doi.org/10.1002/pro.2817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fujiki Y, Hubbard AL, Fowler S, Lazarow PB (1982) Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J Cell Biol 93(1):97–102. https://doi.org/10.1083/jcb.93.1.97

    Article  CAS  PubMed  Google Scholar 

  14. Ritz D, Kinzi J, Neri D, Fugmann T (2017) Data-independent acquisition of HLA class I peptidomes on the Q exactive mass spectrometer platform. Proteomics 17(19). https://doi.org/10.1002/pmic.201700177

  15. Ting YS, Egertson JD, Bollinger JG, Searle BC, Payne SH, Noble WS et al (2017) PECAN: library-free peptide detection for data-independent acquisition tandem mass spectrometry data. Nat Methods 14(9):903–908. https://doi.org/10.1038/nmeth.4390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tsou CC, Tsai CF, Teo GC, Chen YJ, Nesvizhskii AI (2016) Untargeted, spectral library-free analysis of data-independent acquisition proteomics data generated using Orbitrap mass spectrometers. Proteomics 16(15–16):2257–2271. https://doi.org/10.1002/pmic.201500526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang Y, Bilbao A, Bruderer T, Luban J, Strambio-De-Castillia C, Lisacek F et al (2015) The use of variable Q1 isolation windows improves selectivity in LC-SWATH-MS acquisition. J Proteome Res 14(10):4359–4371. https://doi.org/10.1021/acs.jproteome.5b00543

    Article  CAS  PubMed  Google Scholar 

  18. Amodei D, Egertson J, MacLean BX, Johnson R, Merrihew GE, Keller A et al (2019) Improving precursor selectivity in data-independent acquisition using overlapping windows. J Am Soc Mass Spectrom 30(4):669–684. https://doi.org/10.1007/s13361-018-2122-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Searle BC, Pino LK, Egertson JD, Ting YS, Lawrence RT, MacLean BX et al (2018) Chromatogram libraries improve peptide detection and quantification by data independent acquisition mass spectrometry. Nat Commun 9(1):5128. https://doi.org/10.1038/s41467-018-07454-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kawashima Y, Watanabe E, Umeyama T, Nakajima D, Hattori M, Honda K et al (2019) Optimization of data-independent acquisition mass spectrometry for deep and highly sensitive proteomic analysis. Int J Mol Sci 20(23):5932. https://doi.org/10.3390/ijms20235932

    Article  CAS  PubMed Central  Google Scholar 

  21. Holewinski RJ, Parker SJ, Matlock AD, Venkatraman V, Van Eyk JE (2016) Methods for SWATH: data independent acquisition on TripleTOF mass spectrometers. Methods Mol Biol 1410:265–279. https://doi.org/10.1007/978-1-4939-3524-6_16

    Article  CAS  PubMed  Google Scholar 

  22. Gessulat S, Schmidt T, Zolg DP, Samaras P, Schnatbaum K, Zerweck J et al (2019) Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning. Nat Methods 16(6):509–518. https://doi.org/10.1038/s41592-019-0426-7

    Article  CAS  PubMed  Google Scholar 

  23. Searle BC, Swearingen KE, Barnes CA, Schmidt T, Gessulat S, Kuster B et al (2020) Generating high quality libraries for DIA MS with empirically corrected peptide predictions. Nat Commun 11(1):1548. https://doi.org/10.1038/s41467-020-15346-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Kawashima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nakajima, D., Ohara, O., Kawashima, Y. (2022). Data-Independent Acquisition Mass Spectrometry-Based Deep Proteome Analysis for Hydrophobic Proteins from Dried Blood Spots Enriched by Sodium Carbonate Precipitation. In: Corrales, F.J., Paradela, A., Marcilla, M. (eds) Clinical Proteomics. Methods in Molecular Biology, vol 2420. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1936-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1936-0_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1935-3

  • Online ISBN: 978-1-0716-1936-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics