Skip to main content

Analytical Methodologies for Neonicotinoid Determination in Bee Products

  • Protocol
  • First Online:
Pesticide Toxicology

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Neonicotinoids are systemic insecticides of great importance for agriculture due to their powerful activity against pests and insects. However, concerns regarding the side effects on health and the environment of this family of insecticides continue to increase, since these can then be transferred to the environment and the food chain, with potential adverse consequences for nontargeted organisms such as bees. In fact, exposure to neonicotinoids has been identified as one of the factors involved in the sudden decline in the bee population, and for this reason, numerous studies have been published relating to their extraction and determination in bee products (honey, beeswax, bee pollen, royal jelly, nectar, and bee bread). Therefore, the main goal of this chapter is to present an overview of the analytical methodologies generally employed to determine neonicotinoid insecticides and related compounds in bee products during the last 10 years (2010–2020), as this could help to facilitate their assessment. The layout of the chapter is in accordance with the different bee products, indicating and discussing the most common sample treatments and evaluation methods used to determine neonicotinoids in each of them. A list of some of the most relevant applications is provided for each bee product. The references included will provide the reader with a comprehensive overview of and insight into the analysis of neonicotinoid insecticides in bee products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACN:

Acetonitrile

CIAME:

Cold-induced aggregation microextraction

DAD:

Diode array detector

DCM:

Dichloromethane

DI:

Dilution

DLLME:

Dispersive liquid–liquid microextraction

DPX:

Disposable pipette extraction

dSPE:

Dispersive solid-phase extraction

EMR-lipid:

Enhanced matrix removal-lipid

ESI:

Electrospray ionization

EV:

Evaporation

FLD:

Fluorescence detector

GCB:

Graphitized carbon black

HPLC:

High-performance liquid chromatography

IL:

Ionic liquid

IT:

Ion trap

LOD:

Limit of detection

LOQ:

Limit of quantification

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

NEOs:

Neonicotinoids

PDA:

Photodiode array

PSA:

Primary secondary amine

QqQ:

Triple quadrupole

QTOF:

Quadrupole time-of-flight

QTRAP:

Triple quadrupole linear ion trap mass spectrometer

QuEChERS:

Quick, Easy, Cheap, Effective, Rugged and Safe

RI:

Refractive index

SFC:

Supercritical fluid chromatography

SQ:

Single quadrupole

SULLE:

Sugaring-out-assisted liquid–liquid extraction

UHPLC:

Ultra-high-performance liquid chromatography

References

  1. Sánchez-Bayo F, Goka K (2014) Pesticide residues and bees—a risk assessment. PLoS One 9:1–14

    Google Scholar 

  2. VanEngelsdorp D, Evans C, Evans JD, Saegerman C, Mullin C, Haubruge E, Nguyen BK, Frazier M, Frazier J, Cox-Foster D, Chen Y, Underwood R, Tarpy D, Pettis J (2009) Colony collapse disorder: a descriptive study. PLoS One 4:1–17

    Google Scholar 

  3. Fairbrother A, Purdy J, Anderson T, Fell R (2014) Risks of neonicotinoid insecticides to honeybees. Environ Toxicol Chem 33:719–731

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Yamamoto I, Casida JE (2001) Neonicotenoid insecticides and the nicotinic acetycholine receptor. Pest Manag Sci 57:102–103

    Google Scholar 

  5. Pettis JS, Vanengelsdorp D, Johnson J, Dively G (2012) Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema. Naturwissenschaften 99:153–158

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Commission Implementing Regulation (EU) No 485/2013. https://eur-lex.europa.eu/legalcontent/EN/TXT/PDF/?uri=CELEX:32013R0485&from=E. Accessed 19 Nov 2020

  7. Lawal A, Wong RCS, Tan GH, Abdulra’uf LB, Alsharif AMA (2018) Recent modifications and validation of QuEChERS-dSPE coupled to LC–MS and GC–MS instruments for determination of pesticide/ agrochemical residues in fruits and vegetables: review. J Chromatogr Sci 56:656–669

    CAS  PubMed  Google Scholar 

  8. Garrido-Frenich AG, Romero-González R, Aguilera-Luiz MM (2014) Comprehensive analysis of toxics (pesticides, veterinary drugs and mycotoxins) in food by UHPLC-MS. TRAC-Trend Anal Chem 63:158–169

    Google Scholar 

  9. Madej K, Kalenik TK, Piekoszewski W (2018) Sample preparation and determination of pesticides in fat-containing foods. Food Chem 269:527–541

    CAS  PubMed  Google Scholar 

  10. Masiá A, Suarez-Varela MM, Llopis-Gonzalez PY (2016) Determination of pesticides and veterinary drug residues in food by liquid chromatography-mass spectrometry: a review. Anal Chim Acta 936:40–61

    PubMed  Google Scholar 

  11. Jiménez-López J, Llorent-Martínez EJ, Ortega-Barrales P, Ruiz-Medina A (2020) Analysis of neonicotinoid pesticides in the Agri-food sector: a critical assessment of the state of the art. Appl Spectrosc Rev 58:613–646

    Google Scholar 

  12. Tu X, Chen W (2020) Overview of analytical methods for the determination of neonicotinoid pesticides in honeybee products and honeybee. Crit Rev Anal Chem 51(4):329–338. https://doi.org/10.1080/10408347.2020.1728516

    Article  CAS  PubMed  Google Scholar 

  13. Juan-Borrás M, Domenech E, Escriche I (2016) Mixture-risk assessment of pesticide residues in retail polyfloral honey. Food Control 67:127–134

    Google Scholar 

  14. Ares AM, Valverde S, Bernal JL, Toribio L, Nozal MJ, Bernal J (2017) Determination of flubendiamide in honey at trace levels by using solid phase extraction and liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Chem 232:169–176

    CAS  PubMed  Google Scholar 

  15. Valverde S, Ibáñez M, Bernal JL, Nozal MJ, Hernández F, Bernal J (2018) Development and validation of ultra high performance-liquid chromatography–tandem mass spectrometry-based methods for the determination of neonicotinoid insecticides in honey. Food Chem 266:215–222

    CAS  PubMed  Google Scholar 

  16. Kamel A (2010) Refined methodology for the determination of neonicotinoid pesticides and their metabolites in honey bees and bee products by liquid chromatography-tandem mass spectrometry (LC-MS/MS). J Agric Food Chem 58:5926–5831

    CAS  PubMed  Google Scholar 

  17. Tanner G, Czerwenka C (2011) LC-MS/MS analysis of neonicotinoid insecticides in honey: methodology and residue findings in Austrian honeys. J Agric Food Chem 59:12271–12277

    CAS  PubMed  Google Scholar 

  18. Paradis D, Bérail G, Bonmatin JB, Belzunces (2014) Sensitive analytical methods for 22 relevant insecticides of 3 chemical families in honey by GC-MS/MS and LC-MS/MS. Anal Bioanal Chem 406:621–633

    CAS  PubMed  Google Scholar 

  19. Kasiotis KM, Anagnostopoulos C, Anastasiadou P, Machera K (2014) Pesticide residues in honeybees, honey and bee pollen by LC–MS/MS screening: reported death incidents in honeybees. Sci Total Environ 485-486:633–642

    CAS  PubMed  Google Scholar 

  20. Jovanov P, Guzsvány V, Franko M, Lazić S, Sakač M, Šarić B, Kos J (2015) Development of HPLC-DAD method for determination of neonicotinoids in honey. J Food Compos Anal 40:106–113

    CAS  Google Scholar 

  21. Chen Z, Dong F, Li S, Zheng Z, Xu Y, Xu J, Liu X, Zheng Y (2015) Response surface methodology for the enantioseparation of dinotefuran and its chiral metabolite in bee products and environmental samples by supercritical fluid chromatography/tandem mass spectrometry. J Chromatogr A 1410:181–189

    CAS  PubMed  Google Scholar 

  22. Tette PA, da Silva Oliveira FA, Pereira EN, Silva G, de Abreu Glória MB, Fernandes C (2016) Multiclass method for pesticides quantification in honey by means of modified QuEChERS and UHPLC–MS/MS. Food Chem 211:130–139

    CAS  PubMed  Google Scholar 

  23. Codling G, Al Naggar Y, Giesy JP, Robertson AJ (2016) Concentrations of neonicotinoid insecticides in honey, pollen and honey bees (Apis mellifera L.) in Central Saskatchewan, Canada. Chemosphere 144:2321–23288

    CAS  PubMed  Google Scholar 

  24. Laaniste A, Leito I, Rebane R, Lõhmus R, Lõhmus A, Punga F, Kruve A (2016) Determination of neonicotinoids in Estonian honey by liquid chromatography-electrospray mass spectrometry. J Environ Sci Health B 51:455–464

    CAS  PubMed  Google Scholar 

  25. Al Naggar Y, Codling G, Giesy JP (2017) Human dietary intake and hazard characterization for residues of neonicotinoids and organophosphorus pesticides in Egyptian honey. Toxicol Environ Chem 99:1397–1408

    Google Scholar 

  26. Amulen DR, Spanoghe P, Houbraken M, Tamale A, de Graaf DC, Cross P et al (2017) Environmental contaminants of honeybee products in Uganda detected using LC-MS/MS and GC-ECD. PLoS One 12:e0178546

    PubMed  PubMed Central  Google Scholar 

  27. Michlig MP, Merke J, Pacini A, Orellano E, Beldoménico HR, Repetti MR (2018) Determination of imidacloprid in beehive samples by UHPLC-MS/MS. Microchem J 143:72–81

    CAS  Google Scholar 

  28. Hrynko I, Łozowicka B, Kaczyński P (2018) Liquid chromatographic MS/MS analysis of a large group of insecticides in honey by modified QuEChERS. Food Anal Methods 11:2307–2319

    Google Scholar 

  29. Bridi R, Larena A, Pizarro PN, Giordano A, Montenegro G (2018) LC-MS/MS analysis of neonicotinoid insecticides in honey: residue findings in Chilean honeys. Cienc Agrotec 42:51–57

    CAS  Google Scholar 

  30. Bommuraj V, Chen Y, Klein H, Sperling R, Barel S, Shimshoni JA (2019) Pesticide and trace element residues in honey and beeswax combs from Israel in association with human risk assessment and honey adulteration. Food Chem 299:125123

    CAS  PubMed  Google Scholar 

  31. Gaweł M, Kiljanek T, Niewiadowska A, Semeniuk S, Goliszek M, Burek O, Posyniak A (2019) Determination of neonicotinoids and 199 other pesticide residues in honey by liquid and gas chromatography coupled with tandem mass spectrometry. Food Chem 282:36–47

    PubMed  Google Scholar 

  32. Mrzlikar M, Heath D, Heath E, Markelj, Borovšak AK, Prosen H (2019) Investigation of neonicotinoid pesticides in Slovenian honey by LC-MS/MS. LWT-Food Sci Technol 104:45–52

    CAS  Google Scholar 

  33. Mejias E, Gómez C, Garrido T, Godoy P, Gómez M, Montenegro G (2019) Natural attributes of Chilean honeys modified by the presence of neonicotinoids residues. Agrofor Syst 93:2257–2266

    Google Scholar 

  34. Kammoun S, Mulhauser B, Aebi A, Mitchell EAD, Glauser G (2019) Ultra-trace level determination of neonicotinoids in honey as a tool for assessing environmental contamination. Environ Pollut 247:964–972

    CAS  PubMed  Google Scholar 

  35. Campillo N, Viñas P, Férez-Melgarejo G, Hernández-Córdoba M (2013) Liquid chromatography with diode array detection and tandem mass spectrometry for the determination of neonicotinoid insecticides in honey samples using dispersive liquid−liquid microextraction. J Agric Food Chem 61(20):4799–4805

    CAS  PubMed  Google Scholar 

  36. Gbylik-Sikorska M, Sniegocki T, Posyniak A (2015) Determination of neonicotinoid insecticides and their metabolites in honey bee and honey by liquid chromatography tandem mass spectrometry. J Chromatogr B 990:132–140

    CAS  Google Scholar 

  37. Sánchez-Hernández L, Hernández D, Martín MT, Nozal MJ, Higes M, Bernal JL (2016) Residues of neonicotinoids and their metabolites in honey and pollen from sunflower and maize seed dressing crops. J Chromatogr A 1428:220–227

    PubMed  Google Scholar 

  38. Hou J, Xie W, Hong D, Zhang W, Li F, Qian Y, Han C (2019) Simultaneous determination of neonicotinoid insecticides and two metabolites in royal-jelly by LC-MS/MS. Food Chem 270:204–213

    CAS  PubMed  Google Scholar 

  39. Jovanov P, Guzsvány V, Franko M, Lazić S, Sakač M, Šarić B, Banjac V (2013) Multi-residue method for determination of selected neonicotinoid insecticides in honey using optimized dispersive liquid–liquid microextraction combined with liquid chromatography-tandem mass spectrometry. Talanta 111:125–133

    CAS  PubMed  Google Scholar 

  40. Vichapong J, Burakham R, Srijaranai S (2015) In-coupled syringe assisted octanol-water partition microextraction coupled with high-performance liquid. Chromatography for simultaneous determination of neonicotinoid insecticide residues in honey. Talanta 139:21–26

    CAS  PubMed  Google Scholar 

  41. Carbonell-Rozas L, Lara FJ, Iruela MO, García-Campaña AM (2020) Capillary liquid chromatography as an effective method for the determination of seven neonicotinoid residues in honey samples. J Sep Sci 43:3847–3855

    CAS  PubMed  Google Scholar 

  42. Yang C, Ran L, Xu M, Ren D, Yi L (2019) In situ ionic liquid dispersive liquid-liquid microextraction combined with ultra high performance liquid chromatography for determination of neonicotinoid insecticides in honey samples. J Sep Sci 42:1930–1937

    CAS  PubMed  Google Scholar 

  43. Vichapong J, Burakham R, Santaladchaiyakit Y, Srijaranai S (2016) A preconcentration method for analysis of neonicotinoids in honey samples by ionic liquid-based cold-induced aggregation microextraction. Talanta 155:216–221

    CAS  PubMed  Google Scholar 

  44. Chen W, Wu S, Zhang J, Yu F, Hou J, Miao X, Tu X (2019) Matrix-induced sugaring-out: a simple and rapid sample preparation method for the determination of neonicotinoid pesticides in honey. Molecules 24:2761

    PubMed Central  Google Scholar 

  45. Song S, Zhang C, Chen Z, He F, Wei J, Tan H, Li X (2018) Simultaneous determination of neonicotinoid insecticides and insect growth regulators residues in honey using LC-MS/MS with anion exchanger-disposable pipette extraction. J Chromatogr A 1557:51–61

    CAS  PubMed  Google Scholar 

  46. Yáñez KP, Bernal JL, Nozal MJ, Martín MT, Bernal J (2013) Fast determination of Imidacloprid in beeswax by liquid chromatography coupled to electrospray-mass spectrometry. Curr Anal Chem 9:495–503

    Google Scholar 

  47. Yáñez KP, Bernal JL, Nozal MJ, Martín MT, Bernal J (2013) Determination of seven neonicotinoid insecticides in beeswax by liquid chromatography coupled to electrospray-mass spectrometry using a fused-core column. J Chromatogr A 1285:110–117

    PubMed  Google Scholar 

  48. Sánchez-Hernández L, Hernández-Domínguez D, Bernal J, Neusüß C, Martín MT, Bernal JL (2014) Capillary electrophoresis-mass spectrometry as a new approach to analyze neonicotinoid insecticides. J Chromatogr A 1359:317–324

    PubMed  Google Scholar 

  49. Valverde S, Ares AM, Bernal JL, Nozal MJ, Bernal J (2018) Fast determination of neonicotinoid insecticides in beeswax by ultra-high performance liquid chromatography-tandem mass spectrometry using an enhanced matrix removal-lipid sorbent for clean-up. Microchem J 142:70–77

    CAS  Google Scholar 

  50. Daniele G, Giroud B, Jabot C, Vulliet E (2018) Exposure assessment of honeybees through study of hive matrices: analysis of selected pesticide residues in honeybees, beebread, and beeswax from French beehives by LC-MS/MS. Environ Sci Pollut Res Int 25:6145–6153

    CAS  PubMed  Google Scholar 

  51. Jabot C, Fieu M, Giroud B, Buleté A, Casablanca H, Vulliet E (2015) Trace-level determination of pyrethroid, neonicotinoid and carboxamide pesticides in beeswax using dispersive solid-phase extraction followed by ultra-high-performance liquid chromatography-tandem mass spectrometry. Int J Environ Anal Chem 95:240–257

    CAS  Google Scholar 

  52. Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, Vanengelsdorp D, Pettis JS (2010) High levels of miticides and agrochemicals in north American apiaries: implications for honey bee health. PLoS One 5:e9754

    PubMed  PubMed Central  Google Scholar 

  53. Niell S, Cesio V, Hepperle J, Doerk D, Kirsch L, Kolberg D, Scherbaum E, Anastassiades M, Heinzen H (2014) QuEChERS-based method for the multiresidue analysis of pesticides in beeswax by LC-MS/MS and GC×GC-TOF. J Agric Food Chem 62:3675–3683

    CAS  PubMed  Google Scholar 

  54. Harriet J, Campá JP, Grajales M, Lhéritier C, Gómez Pajuelo A, Mendoza-Spina Y, Carrasco-Letelier L (2017) Agricultural pesticides and veterinary substances in Uruguayan beeswax. Chemosphere 177:77–83

    CAS  PubMed  Google Scholar 

  55. Herrera López S, Lozano A, Sosa A, Hernando MD, Fernández-Alba AR (2016) Screening of pesticide residues in honeybee wax comb by LC-ESI-MS/MS. A pilot study. Chemosphere 163:44–53

    PubMed  Google Scholar 

  56. Lehotay SJ, Maštovská K, Lightfield R (2005) Use of buffering and other means to improve results of problematic pesticides in a fast and easy method for residue analysis of fruits and vegetables. J AOAC Int 88:615–629

    CAS  PubMed  Google Scholar 

  57. Ares AM, Valverde S, Bernal JL, Nozal MJ, Bernal J (2018) Extraction and determination of bioactive compounds from bee pollen. J Pharm Biomed Anal 147:110–124

    CAS  PubMed  Google Scholar 

  58. Chen M, Collins EM, Tao L, Lu C (2013) Simultaneous determination of residues in pollen and high-fructose corn syrup from eight neonicotinoid insecticides by liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 405:9251–9264

    CAS  PubMed  Google Scholar 

  59. David A, Botías C, Abdul-Sada A, Goulson D, Hill EM (2015) Sensitive determination of mixtures of neonicotinoid and fungicide residues in pollen and single bumblebees using a scaled down QuEChERS method for exposure assessment. Anal Bioanal Chem 407:8151–8162

    CAS  PubMed  Google Scholar 

  60. Valverde S, Bernal JL, Martín MT, Nozal MJ, Bernal J (2016) Fast determination of neonicotinoid insecticides in bee pollen using QuEChERS and ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Electrophoresis 37:2470–2477

    CAS  PubMed  Google Scholar 

  61. Moreno-González D, Alcántara-Durán J, Gilbert-López B, Beneito-Cambra M, Cutillas VM, Rajski LR, Molina-Díaz A, García-Reyes AM (2019) Sensitive detection of neonicotinoid insecticides and other selected pesticides in pollen and nectar using nanoflow liquid chromatography orbitrap tandem mass spectrometry. J AOAC Int 101:367–373

    Google Scholar 

  62. Hall MJ, Dang V, Bradbury SP, Coats JR (2020) Optimization of QuEChERS method for simultaneous determination of neonicotinoid residues in pollinator forage. Molecules 25:2732

    CAS  PubMed Central  Google Scholar 

  63. Yáñez KP, Martín MT, Bernal JL, Nozal MJ, Bernal J (2014) Trace analysis of seven neonicotinoid insecticides in bee pollen by solid–liquid extraction and liquid chromatography coupled to electrospray ionization mass spectrometry. Food Anal Methods 7:490–499

    Google Scholar 

  64. López-Fernández O, Rial-Otero R, Simal-Gándara J (2015) High-throughput HPLC–MS/MS determination of the persistence of neonicotinoid insecticide residues of regulatory interest in dietary bee pollen. Anal Bioanal Chem 407:7101–7110

    PubMed  Google Scholar 

  65. Hou J, Xie W, Zhang W, Li F, Qian Y, Sheng T, Mao R, Yao X (2019) Simultaneous determination of neonicotinoid insecticides and two metabolites in royal-jelly by LC-MS/MS. J Chinese Mass Spectrom Soc 40:139–150

    CAS  Google Scholar 

  66. Giroud B, Bruckner S, Straub L, Neuman P, William GR, Vulliet E (2019) Trace-level determination of two neonicotinoid insecticide residues in honey bee royal jelly using ultra-sound assisted salting-out liquid liquid extraction followed by ultra-high-performance liquid chromatography-tandem mass spectrometry. Microchem J 151:104249

    CAS  Google Scholar 

  67. Valverde S, Ares AM, Arribas M, Bernal JL, Nozal MJ, Bernal J (2018) Development and validation of UHPLC–MS/MS methods for determination of neonicotinoid insecticides in royal jelly-based products. J Food Compos Anal 70:105–113

    CAS  Google Scholar 

  68. Bishop CA, Woundneh MB, Maisonneuve F, Common J, Elliott JE, Moran AJ (2020) Determination of neonicotinoids and butenolide residues in avian and insect pollinators and their ambient environment in Western Canada (2017, 2018). Sci Total Environ 737:139386

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Bernal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Valverde, S., Ares, A.M., Nozal, M.J., Bernal, J. (2022). Analytical Methodologies for Neonicotinoid Determination in Bee Products. In: Gallardo, E., Barroso, M. (eds) Pesticide Toxicology. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1928-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1928-5_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1927-8

  • Online ISBN: 978-1-0716-1928-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics