Skip to main content

Atherosclerosis: Pathogenesis and Key Cellular Processes, Current and Emerging Therapies, Key Challenges, and Future Research Directions

  • Protocol
  • First Online:
Atherosclerosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2419))

Abstract

Atherosclerosis is the principal cause of cardiovascular disease that continues to be a substantial drain on healthcare systems, being responsible for about 31% of all global deaths. Atherogenesis is influenced by a range of factors, including oxidative stress, inflammation, hypertension, and hyperlipidemia, and is ultimately driven by the accumulation of low-density lipoprotein cholesterol within the arterial wall of medium and large arteries. Lipoprotein accumulation stimulates the infiltration of immune cells (such as monocytes/macrophages and T-lymphocytes), some of which take up the lipoprotein, leading to the formation of lipid-laden foam cells. Foam cell death results in increased accumulation of dead cells, cellular debris and extracellular cholesterol, forming a lipid-rich necrotic core. Vascular smooth muscle cells from the arterial media also migrate into the intima layer and proliferate, taking up the available lipids to become foam cells and producing extracellular matrix proteins such as collagen and elastin. Plaque progression is characterized by the formation of a fibrous cap composed of extracellular matrix proteins and smooth muscle cells, which acts to stabilize the atherosclerotic plaque. Degradation, thinning, and subsequent rupture of the fibrous cap leads to lumen-occlusive atherothrombosis, most commonly resulting in heart attack or stroke. This chapter describes the pathogenesis of atherosclerosis, current and emerging therapies, key challenges, and future directions of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moss JWE, Ramji DP (2016) Nutraceutical therapies for atherosclerosis. Nat Rev Cardiol 13(9):513–532. https://doi.org/10.1038/nrcardio.2016.103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Basatemur GL, Jørgensen HF, Clarke MCH, Bennett MR, Mallat Z (2019) Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol 16(12):727–744. https://doi.org/10.1038/s41569-019-0227-9

    Article  PubMed  Google Scholar 

  3. Virani SS et al (2021) Heart disease and stroke statistics - 2021 update. Circulation 143(8):e254–e743

    Article  PubMed  Google Scholar 

  4. Xu S (2020) Therapeutic potential of blood flow mimetic compounds in preventing endothelial dysfunction. Pharmacol Res 155:104737. https://doi.org/10.1016/j.phrs.2020.104737

    Article  CAS  PubMed  Google Scholar 

  5. Jongstra-Bilen J, Haidari M, Zhu SN, Chen M, Guha D, Cybulsky MI (2006) Low-grade chronic inflammation in regions of the normal mouse arterial intima predisposed to atherosclerosis. J Exp Med 203(9):2073–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rajendran P, Rengarajan T, Thangavel J et al (2013) The vascular endothelium and human diseases. Int J Biol Sci 9(10):1057–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fang Y, Wu D, Birukov KG (2019) Mechanosensing and mechanoregulation of endothelial cell functions. Compr Physiol 9(2):873–904

    Article  PubMed  PubMed Central  Google Scholar 

  8. Niu N, Xu S, Xu Y et al (2019) Targeting mechanosensitive transcription factors in atherosclerosis. Trends Pharmacol Sci 40(4):253–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sitia S, Tomasoni L, Atzeni F, Ambrosio G, Cordiano C, Catapano A, Tramontana S, Perticone F, Naccarato P, Camici P, Picano E, Cortigiani L, Bevilacqua M, Milazzo L, Cusi D, Barlassina C, Sarzi-Puttini P, Turiel M (2010) From endothelial dysfunction to atherosclerosis. Autoimmun Rev 9:830. https://doi.org/10.1016/j.autrev.2010.07.016

    Article  CAS  PubMed  Google Scholar 

  10. Wang D, Yang Y, Lei Y et al (2019) Targeting foam cell formation in atherosclerosis: therapeutic potential of natural products. Pharmacol Rev 71(4):596–670

    Article  CAS  PubMed  Google Scholar 

  11. Buckley ML, Ramji DP (2015) The influence of dysfunctional signaling and lipid homeostasis in mediating the inflammatory responses during atherosclerosis. Biochim Biophys Acta 1852(7):1498–1510. https://doi.org/10.1016/j.bbadis.2015.04.011

    Article  CAS  PubMed  Google Scholar 

  12. Huang L, Chambliss KL, Gao X, Yuhanna I, Behling-Kelly E, Bergaya S, Ahmed M, Michaely P, Luby-Phelps K, Darehshouri A, Xu L, Fisher EA, Ge WP, Mineo C, Shaul PW (2019) SR-B1 drives endothelial cell LDL transcytosis via DOCK4 to promote atherosclerosis. Nature 569(7757):565–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tabas I, Williams KJ, Boren J (2007) Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116:1832–1844

    Article  CAS  PubMed  Google Scholar 

  14. McLaren JE, Michael DR, Ashlin TG et al (2011) Cytokines, macrophage lipid metabolism and foam cells: implications for cardiovascular disease therapy. Prog Lipid Res 50:331–347

    Article  CAS  PubMed  Google Scholar 

  15. Zhang J, Wang D, Shenghu H (2015) Roles of antibody against oxygenized low density lipoprotein in atherosclerosis: recent advances. Int J Clin Exp Med 8(8):11922–11929

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ruan Z-H, Xu Z-X, Zhou X-Y, Zhang X, Shang L (2019) Implications of necroptosis for cardiovascular diseases. Curr Med Sci 39(4):513–522

    Article  PubMed  Google Scholar 

  17. Michael DR, Ashlin TG, Davies CS et al (2013) Differential regulation of macropinocytosis in macrophages by cytokines: implications for foam cell formation and atherosclerosis. Cytokine 64(1):357–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Phillips MC (2014) Molecular mechanism of cellular cholesterol efflux. J Biol Chem 29:24020–24029

    Article  Google Scholar 

  19. Trigatti BL, Rigotti A, Braun A (2000) Cellular and physiological roles of SR-B1, a lipoprotein receptor which mediates selective lipid uptake. Biochim Biophys Acta 1529(1–3):276–286

    Article  CAS  PubMed  Google Scholar 

  20. Trigatti BL, Rigotti A, Krieger M (2000) The role of the high-density lipoprotein receptor SR-B1 in cholesterol metabolism. Curr Opin Lipidol 11(2):123–131

    Article  CAS  PubMed  Google Scholar 

  21. Kwiterovich PO (1998) The antiatherogenic role of high-density lipoprotein cholesterol. Am J Cardiol 82(9A):13Q–21Q

    Article  CAS  PubMed  Google Scholar 

  22. Boden WE (2000) High-density lipoprotein cholesterol as an independent risk factor in cardiovascular disease: assessing the data from Framingham to the Veterans Affairs high-density lipoprotein intervention trial. Am J Cardiol 86(12A):19L–22L

    Article  CAS  PubMed  Google Scholar 

  23. Harper CR, Jacobson TA (1999) New perspectives on the management of low levels of high-density lipoprotein cholesterol. Arch Intern Med 159(10):1049–1057

    Article  CAS  PubMed  Google Scholar 

  24. Libby P (2001) What have we learned about the biology of atherosclerosis? The role of inflammation. Am J Cardiol 88(7B):3J

    CAS  PubMed  Google Scholar 

  25. Di Angelantonio E, Sarwar N, Perry P, Kaptoge S, Ray KK, Thompson A, Wood AM, Lewington S, Sattar N, Packard CJ, Collins R, Thompson SG, Danesh J (2009) Major lipids, apolipoproteins, and risk of vascular disease. JAMA 302(18):1993–2000

    Article  PubMed  Google Scholar 

  26. Shirai T, Hilhorst M, Harrison DG et al (2015) Macrophages in vascular inflammation - from atherosclerosis to vasculitis. Autoimmunity 48(3):139–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gerszten RE, Garcia-Zepeda EA, Lim YC et al (1999) MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 398:718–723

    Article  CAS  PubMed  Google Scholar 

  28. Colonnello JS, Hance KA, Shames ML et al (2003) Transient exposure to elastase induces mouse aortic wall smooth muscle cell production of MCP-1 and RANTES during development of experimental aortic aneurysm. J Vasc Surg 38:138–146

    Article  PubMed  Google Scholar 

  29. Stoger JL, Gijbels MJ, van der Velden S et al (2012) Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis 225:461–468

    Article  PubMed  Google Scholar 

  30. Fenyo IM, Gafencu AV (2013) The involvement of the monocytes/macrophages in chronic inflammation associated with atherosclerosis. Immunobiology 218:1376–1384

    Article  CAS  PubMed  Google Scholar 

  31. Mantovani A, Garlanda C, Locati M (2009) Macrophage diversity and polarization in atherosclerosis: a question of balance. Arterioscler Thromb Vasc Biol 29:1419–1423

    Article  CAS  PubMed  Google Scholar 

  32. Simionescu M (2009) Cellular dysfunction in inflammatory-related vascular disorders’ review series. The inflammatory process: a new dimension of a 19 century old story. J Cell Mol Med 13:4291–4292

    Article  PubMed  PubMed Central  Google Scholar 

  33. Robbins CS, Hilgendorf I, Weber GF, Theurl I, Iwamoto Y, Figueiredo JL, Gorbatov R, Sukhova GK, Gerhardt LM, Smyth D, Zavitz CC, Shikatani EA, Parsons M, van Rooijen N, Lin HY, Husain M, Libby P, Nahrendorf M, Weissleder R, Swirski FK (2013) Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat Med 19(9):1166–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kzhyshkowska J, Neyen C, Gordon S (2012) Role of macrophage scavenger receptors in atherosclerosis. Immunobiology 217(5):492–502

    Article  CAS  PubMed  Google Scholar 

  35. Koelwyn GJ, Corr EM, Erbay E, Moore KJ (2018) Regulation of macrophage immunometabolism in atherosclerosis. Nat Immunol 19(6):526–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wadhera RK, Steen DL, Khan I, Giugliano RP, Foody JM (2016) A review of low-density lipoprotein cholesterol, treatment strategies, and its impact on cardiovascular disease morbidity and mortality. J Clin Lipidol 10(3):472–489. https://doi.org/10.1016/j.jacl.2015.11.010

    Article  PubMed  Google Scholar 

  37. Glass CK, Witztum JL (2001) Atherosclerosis. The road ahead. Cell 104(4):503–516

    Article  CAS  PubMed  Google Scholar 

  38. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, Abela GS, Franchi L, Nuñez G, Schnurr M, Espevik T, Lien E, Fitzgerald KA, Rock KL, Moore KJ, Wright SD, Hornung V, Latz E (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464(7293):1357–1361. https://doi.org/10.1038/nature08938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Moss JWE, Ramji DP (2016) Cytokines: roles in atherosclerosis disease progression and potential therapeutic targets. Future Med Chem 8(11):1317–1330

    Article  CAS  PubMed  Google Scholar 

  40. Adiguzel E, Ahmad PJ, Franco C et al (2009) Collagens in the progression and complications of atherosclerosis. Vasc Med 14:73–89

    Article  PubMed  Google Scholar 

  41. Michael DR, Ashlin TG, Buckley ML et al (2012) Macrophages, lipid metabolism and gene expression in atherogenesis: a therapeutic target of the future? J Clin Lipidol 7:37–48

    Article  CAS  Google Scholar 

  42. Silvestre-Roig C, De Winther MP, Weber C et al (2014) Atherosclerotic plaque destabilization: mechanisms, models, and therapeutic strategies. Circ Res 114:214–226

    Article  CAS  PubMed  Google Scholar 

  43. Bergheanu SC, Bodde MC, Jukema JW (2017) Pathophysiology and treatment of atherosclerosis: current view and future perspective on lipoprotein modification treatment. Neth Hear J 25(4):231–242

    Article  CAS  Google Scholar 

  44. Chan Y-H, Ramji DP (2020) A perspective on targeting inflammation and cytokine actions in atherosclerosis. Future Med Chem 12(7):613–626

    CAS  PubMed  Google Scholar 

  45. Haslinger-Löffler B (2008) Multiple effects of HMG-CoA reductase inhibitors (statins) besides their lipid-lowering function. Kidney Int 74(5):553–555. https://doi.org/10.1038/ki.2008.323

    Article  CAS  PubMed  Google Scholar 

  46. Antonopoulos AS, Margaritis M, Lee R, Channon K, Antoniades C (2012) Statins as anti-inflammatory agents in atherogenesis: molecular mechanisms and lessons from the recent clinical trials. Curr Pharm Des 18(11):1519–1530. https://doi.org/10.2174/138161212799504803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Campbell CY, Rivera JJ, Blumenthal RS (2007) Residual risk in statin-treated patients: future therapeutic options. Curr Cardiol Rep 9(6):499–505. https://doi.org/10.1007/bf02938395

    Article  PubMed  Google Scholar 

  48. Libby P, Ridker PM, Hansson GK (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473(7347):317–325. https://doi.org/10.1038/nature10146

    Article  CAS  PubMed  Google Scholar 

  49. Sampson UK, Fazio S, Linton MF (2012) Residual cardiovascular risk despite optimal LDL cholesterol reduction with statins: the evidence, etiology, and therapeutic challenges. Curr Atheroscler Rep 14(1):1–10. https://doi.org/10.1007/s11883-011-0219-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Weber C, Noels H (2011) Atherosclerosis: current pathogenesis and therapeutic options. Nat Med 17:1410–1422

    Article  CAS  PubMed  Google Scholar 

  51. Ladeiras-Lopes R, Agewall S, Tawakol A et al (2015) Atherosclerosis: recent trials, new targets and future directions. Int J Cardiol 192:72–81

    Article  PubMed  Google Scholar 

  52. Moss JWE, Williams JO, Ramji DP (2018) Nutraceuticals as therapeutic agents for atherosclerosis. Biochem Biophys Acta Mol Basis Dis 1864:1562–1572

    Google Scholar 

  53. Morehouse LA, Sugarman ED, Bourassa P-A et al (2007) Inhibition of CETP activity by torcetrapib reduces susceptibility to diet-induced atherosclerosis in New Zealand White rabbits. J Lipid Res 48:1263–1272

    Article  CAS  PubMed  Google Scholar 

  54. Rittershaus CW, Miller DP, Thomas LJ et al (2000) Vaccine-induced antibodies inhibit CETP activity in vivo and reduce aortic lesions in a rabbit model of atherosclerosis. Arterioscler Thromb Vasc Biol 20:2106–2112

    Article  CAS  PubMed  Google Scholar 

  55. Okamoto H, Yonemori F, Wakitani K et al (2000) A cholesteryl ester transfer protein inhibitor attenuates atherosclerosis in rabbits. Nature 406:203–207

    Article  CAS  PubMed  Google Scholar 

  56. Sugano M, Makino N, Sawada S et al (1998) Effect of antisense oligonucleotides against cholesteryl ester transfer protein on the development of atherosclerosis in cholesterol-fed rabbits. J Biol Chem 273(9):5033–5036

    Article  CAS  PubMed  Google Scholar 

  57. Barter PJ, Chapman MJ, Hennekens CH et al (2003) Cholesteryl ester transfer protein. A novel target for raising HDL and inhibiting atherosclerosis. Arterioscler Thromb Vasc Biol 23:160–167

    Article  CAS  PubMed  Google Scholar 

  58. Nicholls SJ (2018) CETP-inhibition and HDL-cholesterol: a story of CV risk or CV benefit, or both. Clin Pharmacol Ther 104(2):297–300

    Article  PubMed  Google Scholar 

  59. Scherer DJ, Nelson AJ, Psaltis PJ, Nicholls SJ (2017) Targeting low-density lipoprotein cholesterol with PCSK9 inhibitors. Intern Med J 47(8):856–865. https://doi.org/10.1111/imj.13451

    Article  CAS  PubMed  Google Scholar 

  60. Leren TP (2014) Sorting an LDL receptor with bound PCSK9 to intracellular degradation. Atherosclerosis 237:76–81

    Article  CAS  PubMed  Google Scholar 

  61. Lambert G, Sjouke B, Choque B et al (2012) The PCSK9 decade. J Lipid Res 53:2515–2524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hadjiphilippou S, Ray KK (2017) PCSK9 inhibition and atherosclerotic cardiovascular disease prevention: does reality match the hype? Heart 103(21):1670–1679. https://doi.org/10.1136/heartjnl-2016-310844

    Article  CAS  PubMed  Google Scholar 

  63. Ray KK, Wright S, Kallend D et al (2020) Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N Engl J Med 382(16):1507–1519

    Article  CAS  PubMed  Google Scholar 

  64. Jia L, Betters JL, Yu L (2011) Niemann-pick C1-like 1 (NPC1L1) protein in intestinal and hepatic cholesterol transport. Annu Rev Physiol 73:239–259. https://doi.org/10.1146/annurev-physiol-012110-142233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Catapano AL, Graham I, De Backer G et al (2016) ESC/EAS Guidelines for the management of dyslipidaemias: the task force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J 37(39):2999

    Article  PubMed  Google Scholar 

  66. Pinkosky SL, Filippov S, Srivastava RA et al (2013) AMP-activated protein kinase and ATP-citrate lyase are two distinct molecular targets for ETC-1002, a novel small molecule regulator of lipid and carbohydrate metabolism. J Lipid Res 54:134–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Laufs U, Banach M, Mancini GBJ et al (2019) Efficacy and safety of bempedoic acid in patients with hypercholesterolemia and statin intolerance. J Am Heart Assoc 8:e011662

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ballantyne CM, Banach M, Mancini GBJ et al (2018) Efficacy and safety of bempedoic acid added to ezetimibe in statin-intolerant patients with hypdercholesterolemia: a randomized, placebo-controlled study. Atherosclerosis 277:195–203

    Article  CAS  PubMed  Google Scholar 

  69. Ballantyne CM, Laufs U, Ray KK et al (2020) Bempedoic acid plus ezetimibe fixed-dose combination in patients with hypdercholesterolemia and high CVD risk treated with maximally tolerated statin therapy. Eur J Prev Cardiol 27(6):593–603

    Article  PubMed  Google Scholar 

  70. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, Kastelein JJP, Cornel JH, Pais P, Pella D, Genest J, Cifkova R, Lorenzatti A, Forster T, Kobalava Z, Vida-Simiti L, Flather M, Shimokawa H, Ogawa H, Dellborg M, Rossi PRF, Troquay RPT, Libby P, Glynn RJ (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 377(12):1119–1131. https://doi.org/10.1056/NEJMoa1707914

    Article  CAS  PubMed  Google Scholar 

  71. Nidorf SM, Eikelboom JW, Budgeon CA et al (2013) Low-dose colchicine for secondary prevention of cardiovascular disease. J Am Coll Cardiol 61(4):404–410

    Article  CAS  PubMed  Google Scholar 

  72. Tardif J-C, Kouz S, Waters DD et al (2019) Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med 381(26):2497–2505

    Article  CAS  PubMed  Google Scholar 

  73. Nidorf SM, Fiolet ATL, Mosterd A et al (2020) Colchicine in patients with chronic coronary disease. N Engl J Med 383(19):1838–1847

    Article  CAS  PubMed  Google Scholar 

  74. Nidorf SM, Eikelboom JW, Thompson PL (2014) Targeting cholesterol crystal-induced inflammation for the secondary prevention of cardiovascular disease. J Cardiovasc Pharmacol Therapeut 19(1):45–52

    Article  CAS  Google Scholar 

  75. Martinez GJ, Celermajer DS, Patel S (2018) The NLRP3 inflammasome and the emerging role of colchicine to inhibit atherosclerosis-associated inflammation. Atherosclerosis 269:262–271

    Article  CAS  PubMed  Google Scholar 

  76. Xu S, Liu B, Yin M et al (2016) A novel TRPV4-specific agonist inhibits monocyte adhesion and atherosclerosis. Oncotarget 7(25):37622–37635

    Article  PubMed  PubMed Central  Google Scholar 

  77. Xu Y, Liu P, Xu S et al (2017) Tannic acid as a plant-derived polyphenol exerts vasoprotection via enhancing KLF2 expression in endothelial cells. Sci Rep 7(1):6686

    Article  PubMed  PubMed Central  Google Scholar 

  78. Do GM, Kwon EY, Ha TY et al (2011) Tannic acid is more effective than clofibrate for the elevation of hepatic beta-oxidation and the inhibition of 3-hydroxy-3-methyl-glutaryl-CoA reductase and aortic lesion formation in apo E-deficient mice. Br J Nutr 106(12):1855–1863

    Article  CAS  PubMed  Google Scholar 

  79. Parmar KM, Nambudiri V, Dai G et al (2005) Statins exert endothelial atheroprotective effects via the KLF2 transcription factor. J Biol Chem 280(29):26714–26719

    Article  CAS  PubMed  Google Scholar 

  80. Sen-Banerjee S, Mir S, Lin Z et al (2005) Kruppel-like factor 2 as a novel mediator of stain effects in endothelial cells. Circulation 112(5):720–726

    Article  CAS  PubMed  Google Scholar 

  81. Taskinen M-R, Packard CJ, Boren J (2019) Emerging evidence that apoC-III inhibitors provide novel options to reduce the residual CVD. Curr Atheroscler Rep 21:27

    Article  PubMed  PubMed Central  Google Scholar 

  82. Blood I, Crosby J, Peloso GM et al (2014) Rare mutations that disrupt APOC3 function were associated with lower levels of plasma triglycerides and APOC3. Carriers of these mutations were found to have reduced risk of coronary heart disease. N Engl J Med 371(1):22–31

    Google Scholar 

  83. Jorgensen AB, Frikke-Schmidt R, Nordestgaard BG et al (2014) Loss-of-function mutations in APOC3 were associated with low levels of triglycerides and a reduced risk of ischemic cardiovascular disease. N Engl J Med 371(1):32–41

    Article  PubMed  Google Scholar 

  84. Gouni-Berthold I (2017) The role of antisense oligonucleotide therapy against apolipoprotein-CIII in hypertriglyceridemia. Atheroscler Suppl 30:19–27

    Article  PubMed  Google Scholar 

  85. Blom DJ, O’Dea L, Digenio A et al (2018) Characterizing familial chylomicronemia syndrome: baseline data of the APPROACH study. J Clin Lipidol 12(5):1234–1243

    Article  PubMed  Google Scholar 

  86. Lavie CJ, Milani RV, Mehra MR, Ventura HO (2009) Omega-3 polyunsaturated fatty acids and cardiovascular diseases. J Am Coll Cardiol 54(7):585–594. https://doi.org/10.1016/j.jacc.2009.02.084

    Article  CAS  PubMed  Google Scholar 

  87. Mozaffarian D, Wu JHY (2011) Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. J Am Coll Cardiol 58(20):2047–2067. https://doi.org/10.1016/j.jacc.2011.06.063

    Article  CAS  PubMed  Google Scholar 

  88. Calder PC (2013) Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? Br J Clin Pharmacol 75(3):645–662. https://doi.org/10.1111/j.1365-2125.2012.04374.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Babu PVA, Liu D (2008) Green tea catechins and cardiovascular health: an update. Curr Med Chem 15(18):1840–1850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bhardwaj P, Khanna D (2013) Green tea catechins: defensive role in cardiovascular disorders. Chin J Nat Med 11(4):345–353. https://doi.org/10.1016/S1875-5364(13)60051-5

    Article  CAS  PubMed  Google Scholar 

  91. Mangels DR, Mohler ER (2017) Catechins as potential mediators of cardiovascular health. Arterioscler Thromb Vasc Biol 37(5):757–763. https://doi.org/10.1161/ATVBAHA.117.309048

    Article  CAS  PubMed  Google Scholar 

  92. Covas M-I, Konstantinidou V, Fitó M (2009) Olive oil and cardiovascular health. J Cardiovasc Pharmacol 54(6):477–482. https://doi.org/10.1097/FJC.0b013e3181c5e7fd

    Article  CAS  PubMed  Google Scholar 

  93. Estruch R, Ros E, Salas-Salvadó J, Covas M-I, Corella D, Arós F, Gómez-Gracia E, Ruiz-Gutiérrez V, Fiol M, Lapetra J, Lamuela-Raventos RM, Serra-Majem L, Pintó X, Basora J, Muñoz MA, Sorlí JV, Martínez JA, Fito M, Gea A, Hernan MA, Martínez-González MA (2018) Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med 378(25):e34–e47. https://doi.org/10.1056/NEJMoa1800389

    Article  CAS  PubMed  Google Scholar 

  94. Luque-Sierra A, Alvarez-Amor L, Kleemann R, Martín F, Varela LM (2018) Extra-virgin olive oil with natural phenolic content exerts an anti-inflammatory effect in adipose tissue and attenuates the severity of atherosclerotic lesions in ldlr−/− Leiden mice. Mol Nutr Food Res 62(13):e1800295–e1800328. https://doi.org/10.1002/mnfr.201800295

    Article  CAS  PubMed  Google Scholar 

  95. Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, Doyle RT, Juliano RA, Jiao L, Granowitz C, Tardif J-C, Ballantyne CM (2019) Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med 380(1):11–22. https://doi.org/10.1056/NEJMoa1812792

    Article  CAS  PubMed  Google Scholar 

  96. Budoff MJ, Bhatt DL, Kinninger A, Lakshmanan S, Muhlestein JB, Le VT, May HT, Shaikh K, Shekar C, Roy SK, Tayek J, Nelson JR (2020) Effect of icosapent ethyl on progression of coronary atherosclerosis in patients with elevated triglycerides on statin therapy: final results of the EVAPORATE trial. Eur Heart J 41:3925–3932. https://doi.org/10.1093/eurheartj/ehaa750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Getz GS, Reardon CA (2012) Animal models of atherosclerosis. Arterioscler Thromb Vasc Biol 32(5):1104–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lee YT, Lin HY, Chan YWF et al (2017) Mouse models of atherosclerosis: a historical perspective and recent advances. Lipids Health Dis 16:12

    Article  PubMed  PubMed Central  Google Scholar 

  99. Mukhopadhyay R (2013) Mouse models of atherosclerosis: explaining critical roles of lipid metabolism and inflammation. J Appl Genet 54:185–192

    Article  CAS  PubMed  Google Scholar 

  100. Rosenfeld ME, Averill MM, Bennett BJ et al (2008) Progression and disruption of advanced atherosclerotic plaques in murine models. Curr Drug Targets 9:210–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cheng J, Cheng A et al (2020) MicroRNA-144 silencing protects against atherosclerosis in male, but not female mice. Arterioscler Thromb Vasc Biol 40(2):412–425

    Article  CAS  PubMed  Google Scholar 

  102. Zabalawi M, Bhat S, Loughlin T et al (2003) Induction of fatal inflammation in LDL receptor and apoA-I double knockout mice fed dietary fat and cholesterol. Am J Pathol 163(6):1201–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mansukhani NA, Wang Z, Shively VP et al (2018) Sex differences in the LDL receptor knockout mouse model of atherosclerosis. Artery Res 20:8–11

    Article  Google Scholar 

  104. Zhang Y, Wang X, Vales C et al (2006) FXR deficiency causes reduced atherosclerosis in Ldlr-/- mice. Arterioscler Thromb Vasc Biol 26(10):2316–2321

    Article  CAS  PubMed  Google Scholar 

  105. Vanderlaan PA, Reardon CA, Getz GS (2003) Site specificity of atherosclerosis. Arterioscler Thromb Vasc Biol 24(1):12–22

    Article  PubMed  Google Scholar 

  106. Kayashima Y, Maeda-Smithies N (2020) Atherosclerosis in different vascular locations unbiasedly approached with mouse genetics. Genes (Basel) 11(12):1427

    Article  CAS  PubMed Central  Google Scholar 

  107. Ridker PM, Everett BM, Pradhan A et al (2018) Low-dose methotrexate for the prevention of atherosclerotic events. N Engl J Med 380(8):752–762

    Article  PubMed  PubMed Central  Google Scholar 

  108. Choi HK, Hernan MA, Seeger JD et al (2002) Methotrexate and mortality in patients with rheumatoid arthritis: a prospective study. Lancet 359(9313):1173–1177

    Article  CAS  PubMed  Google Scholar 

  109. Micha R, Imamura F, Wyler Von Ballmoos M et al (2011) Systematic review and meta-analysis of methotrexate use and risk of cardiovascular disease. Am J Cardiol 108(9):1362–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Westlake SL, Colebatch AN, Baird J et al (2010) The effect of methotrexate on cardiovascular disease in patients with rheumatoid arthritis: a systematic literature review. Rheumatology 49(2):295–307

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the British Heart Foundation for financial support (grants PG/16/25/32097 and FS/17/75/33257).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yee-Hung Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chan, YH., Ramji, D.P. (2022). Atherosclerosis: Pathogenesis and Key Cellular Processes, Current and Emerging Therapies, Key Challenges, and Future Research Directions. In: Ramji, D. (eds) Atherosclerosis. Methods in Molecular Biology, vol 2419. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1924-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1924-7_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1923-0

  • Online ISBN: 978-1-0716-1924-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics