Skip to main content

Rapid Isolation of Functional Synaptic Vesicles from Tissues Through Cryogrinding, Ultracentrifugation, and Size Exclusion Chromatography

  • Protocol
  • First Online:
Synaptic Vesicles

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2417))

Abstract

Many biochemical and biophysical related questions require the isolation of functional synaptic vesicles. Isolated synaptic vesicles can be used for transporter kinetics studies, synaptic vesicle content analysis and immuno-labeling of specific synaptic vesicle proteins, etc. Here I describe a fast and reliable isolation procedure to allow researchers to isolate a large amount, as well as physiologically functional synaptic vesicles, by following the subsequent order of cryogrinding, gradient ultracentrifugation, and size exclusion liquid chromatography. This process enriches over 90% of the synaptic vesicle population, with low contamination of Golgi or endoplasmic reticulum vesicles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ohsawa K, Dowe GH, Morris SJ, Whittaker VP (1979) The lipid and protein content of cholinergic synaptic vesicles from the electric organ of Torpedo marmorata purified to constant composition: implications for vesicle structure. Brain Res 161:447–457

    Article  CAS  Google Scholar 

  2. Burke RE (2007) Sir Charles Sherrington’s the integrative action of the nervous system: a centenary appreciation. Brain 130:887–894

    Article  Google Scholar 

  3. Pang ZP, Sudhof TC (2010) Cell biology of Ca2+−triggered exocytosis. Curr Opin Cell Biol 22:496–505

    Article  CAS  Google Scholar 

  4. Heuser JE, Reese TS (1981) Structural changes after transmitter release at the frog neuromuscular junction. J Cell Biol 88:564–580

    Article  CAS  Google Scholar 

  5. Sudhof TC (2013) Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron 80:675–690

    Article  CAS  Google Scholar 

  6. Li H, Harlow ML (2014) Individual synaptic vesicles from the electroplaque of Torpedo californica, a classic cholinergic synapse, also contain transporters for glutamate and ATP. Physiol Rep 2:e00206

    Article  Google Scholar 

  7. Harlow ML, Ress D, Stoschek A et al (2001) The architecture of active zone material at the frog’s neuromuscular junction. Nature 409:479–484

    Article  CAS  Google Scholar 

  8. Mutch SA, Kensel-Hammes P, Gadd JC et al (2011) Protein quantification at the single vesicle level reveals that a subset of synaptic vesicle proteins are trafficked with high precision. J Neurosci 31:1461–1470

    Article  CAS  Google Scholar 

  9. Mutch SA, Gadd JC, Fujimoto BS et al (2011) Determining the number of specific proteins in cellular compartments by quantitative microscopy. Nat Protoc 6:1953–1968

    Article  CAS  Google Scholar 

  10. Heuser JE, Reese TS, Dennis MJ et al (1979) Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J Cell Biol 81:275–300

    Article  CAS  Google Scholar 

  11. Takamori S, Rhee JS, Rosenmund C et al (2000) Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature 407:189–194

    Article  CAS  Google Scholar 

  12. Edwards RH (2007) The neurotransmitter cycle and quantal size. Neuron 55:835–858

    Article  CAS  Google Scholar 

  13. Li H, Wu C, Aramayo R et al (2015) Synaptic vesicles contain small ribonucleic acids (sRNAs) including transfer RNA fragments (trfRNA) and microRNAs (miRNA). Sci Rep 5:14918

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Huinan Li, Ph.D. was supported by National Institute on Aging P30AG062422-01 Grant at the time of preparing for this manuscript. This summary is part of his graduate work under the mentorship of Mark L. Harlow, Ph.D. in Department of Biology, Texas A&M University (College Station).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huinan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, H. (2022). Rapid Isolation of Functional Synaptic Vesicles from Tissues Through Cryogrinding, Ultracentrifugation, and Size Exclusion Chromatography. In: Dahlmanns, J., Dahlmanns, M. (eds) Synaptic Vesicles. Methods in Molecular Biology, vol 2417. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1916-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1916-2_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1915-5

  • Online ISBN: 978-1-0716-1916-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics