Skip to main content

Developments in Vaccine Adjuvants

  • Protocol
  • First Online:
Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2412))

Abstract

Vaccines, including subunit, recombinant, and conjugate vaccines, require the use of an immunostimulator/adjuvant for maximum efficacy. Adjuvants not only enhance the strength and longevity of immune responses but may also influence the type of response. In this chapter, we review the adjuvants that are available for use in human vaccines, such as alum, MF59, AS03, and AS01. We extensively discuss their composition, characteristics, mechanism of action, and effects on the immune system. Additionally, we summarize recent trends in adjuvant discovery, providing a brief overview of saponins, TLRs agonists, polysaccharides, nanoparticles, cytokines, and mucosal adjuvants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Delany I, Rappuoli R, De Gregorio E (2014) Vaccines for the 21st century. EMBO Mol Med 6(6):708–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vetter V et al (2018) Understanding modern-day vaccines: what you need to know. Ann Med 50(2):110–120

    Article  PubMed  Google Scholar 

  3. Sompayrac LM (2019) How the immune system works. Wiley, New York

    Google Scholar 

  4. Tognotti E (2010) The eradication of smallpox, a success story for modern medicine and public health: what lessons for the future? J Infect Dev Ctries 4(05):264–266

    Article  PubMed  Google Scholar 

  5. Nevagi RJ, Toth I, Skwarczynski M (2018) Peptide-based vaccines. In: Koutsopoulos S (ed) Peptide applications in biomedicine, biotechnology and bioengineering. Woodhead Publishing, Cambridge, pp 327–358

    Chapter  Google Scholar 

  6. Koff WC et al (2013) Accelerating next-generation vaccine development for global disease prevention. Science 340(6136):1232910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bartlett S, Skwarczynski M, Toth I (2020) Lipids as activators of innate immunity in peptide vaccine delivery. Curr Med Chem 27(17):2887–2901

    Article  CAS  PubMed  Google Scholar 

  8. Reed SG, Orr MT, Fox CB (2013) Key roles of adjuvants in modern vaccines. Nat Med 19(12):1597–1608

    Article  CAS  PubMed  Google Scholar 

  9. Levine MM, Sztein MB (2004) Vaccine development strategies for improving immunization: the role of modern immunology. Nat Immunol 5(5):460–464

    Article  CAS  PubMed  Google Scholar 

  10. Cunningham AL et al (2016) Vaccine development: from concept to early clinical testing. Vaccine 34(52):6655–6664

    Article  CAS  PubMed  Google Scholar 

  11. Li W et al (2014) Peptide vaccine: progress and challenges. Vaccines (Basel) 2(3):515–536

    Article  CAS  Google Scholar 

  12. Moyle PM, Toth I (2013) Modern subunit vaccines: development, components, and research opportunities. ChemMedChem 8(3):360–376

    Article  CAS  PubMed  Google Scholar 

  13. Skwarczynski M, Toth I (2016) Peptide-based synthetic vaccines. Chem Sci 7(2):842–854

    Article  CAS  PubMed  Google Scholar 

  14. Carapetis JR et al (2005) The global burden of group A streptococcal diseases. Lancet Infect Dis 5(11):685–694

    Article  PubMed  Google Scholar 

  15. Azmi F et al (2014) Recent progress in adjuvant discovery for peptide-based subunit vaccines. Hum Vaccin Immunother 10(3):778–796

    Article  CAS  PubMed  Google Scholar 

  16. Coffman RL, Sher A, Seder RA (2010) Vaccine adjuvants: putting innate immunity to work. Immunity 33(4):492–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schijns VE, Lavelle EC (2011) Trends in vaccine adjuvants. Expert Rev Vaccines 10(4):539–550

    Article  CAS  PubMed  Google Scholar 

  18. O’Hagan DT (2015) New-generation vaccine adjuvants. In: eLS. Wiley, New York, pp 1—7

    Google Scholar 

  19. Petrovsky N, Aguilar JC (2004) Vaccine adjuvants: current state and future trends. Immunol Cell Biol 82(5):488–496

    Article  CAS  PubMed  Google Scholar 

  20. Allison AC, Byars NE (1991) Immunological adjuvants: desirable properties and side-effects. Mol Immunol 28(3):279–284

    Article  CAS  PubMed  Google Scholar 

  21. Mbow ML et al (2010) New adjuvants for human vaccines. Curr Opin Immunol 22(3):411–416

    Article  CAS  PubMed  Google Scholar 

  22. Dubensky TW Jr, Reed SG (2010) Adjuvants for cancer vaccines. Semin Immunol 22(3):155–161

    Article  CAS  PubMed  Google Scholar 

  23. Christensen D (2016) Vaccine adjuvants: why and how. Hum Vaccin Immunother 12(10):2709–2711

    Article  PubMed  PubMed Central  Google Scholar 

  24. Di Pasquale A et al (2015) Vaccine adjuvants: from 1920 to 2015 and beyond. Vaccines (Basel) 3(2):320–343

    Article  CAS  Google Scholar 

  25. Del Giudice G, Rappuoli R, Didierlaurent AM (2018) Correlates of adjuvanticity: a review on adjuvants in licensed vaccines. Semin Immunol 39:14–21

    Article  PubMed  CAS  Google Scholar 

  26. Moyer TJ, Zmolek AC, Irvine DJ (2016) Beyond antigens and adjuvants: formulating future vaccines. J Clin Invest 126(3):799–808

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ho NI et al (2018) Adjuvants enhancing cross-presentation by dendritic cells: the key to more effective vaccines? Front Immunol 9:2874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Perez O et al (2013) Adjuvants are key factors for the development of future vaccines: lessons from the finlay adjuvant platform. Front Immunol 4:407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Kool M, Fierens K, Lambrecht BN (2012) Alum adjuvant: some of the tricks of the oldest adjuvant. J Med Microbiol 61(Pt 7):927–934

    Article  CAS  PubMed  Google Scholar 

  30. Clapp T et al (2011) Vaccines with aluminum-containing adjuvants: optimizing vaccine efficacy and thermal stability. J Pharm Sci 100(2):388–401

    Article  CAS  PubMed  Google Scholar 

  31. Principi N, Esposito S (2018) Aluminum in vaccines: does it create a safety problem? Vaccine 36(39):5825–5831

    Article  CAS  PubMed  Google Scholar 

  32. HogenEsch H, O'Hagan DT, Fox CB (2018) Optimizing the utilization of aluminum adjuvants in vaccines: you might just get what you want. NPJ Vaccines 3:51

    Article  PubMed  PubMed Central  Google Scholar 

  33. Oleszycka E, Lavelle EC (2014) Immunomodulatory properties of the vaccine adjuvant alum. Curr Opin Immunol 28:1–5

    Article  CAS  PubMed  Google Scholar 

  34. Gupta RK (1998) Aluminum compounds as vaccine adjuvants. Adv Drug Deliv Rev 32(3):155–172

    Article  CAS  PubMed  Google Scholar 

  35. Burrell LS et al (2000) Aluminium phosphate adjuvants prepared by precipitation at constant pH. Part II: physicochemical properties. Vaccine 19(2-3):282–287

    Article  CAS  PubMed  Google Scholar 

  36. Rabe M, Verdes D, Seeger S (2011) Understanding protein adsorption phenomena at solid surfaces. Adv Colloid Interface Sci 162(1-2):87–106

    Article  CAS  PubMed  Google Scholar 

  37. Hem SL, White JL (1995) Structure and properties of aluminum-containing adjuvants. In: Vaccine design. Springer, Berlin, pp 249–276

    Chapter  Google Scholar 

  38. Al-Shakhshir RH et al (1995) Contribution of electrostatic and hydrophobic interactions to the adsorption of proteins by aluminium-containing adjuvants. Vaccine 13(1):41–44

    Article  CAS  PubMed  Google Scholar 

  39. Mold M, Shardlow E, Exley C (2016) Insight into the cellular fate and toxicity of aluminium adjuvants used in clinically approved human vaccinations. Sci Rep 6:31578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee SH (2012) Detection of human papillomavirus (HPV) L1 gene DNA possibly bound to particulate aluminum adjuvant in the HPV vaccine Gardasil. J Inorg Biochem 117:85–92

    Article  CAS  PubMed  Google Scholar 

  41. Wen Y, Shi Y (2016) Alum: an old dog with new tricks. Emerg Microbes Infect 5:e25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Eisenbarth SC et al (2008) Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453(7198):1122–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hornung V et al (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9(8):847–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kool M et al (2008) Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J Immunol 181(6):3755–3759

    Article  CAS  PubMed  Google Scholar 

  45. Li H et al (2008) Cutting edge: inflammasome activation by alum and alum’s adjuvant effect are mediated by NLRP3. J Immunol 181(1):17–21

    Article  CAS  PubMed  Google Scholar 

  46. Mori A et al (2012) The vaccine adjuvant alum inhibits IL-12 by promoting PI3 kinase signaling while chitosan does not inhibit IL-12 and enhances Th1 and Th17 responses. Eur J Immunol 42(10):2709–2719

    Article  CAS  PubMed  Google Scholar 

  47. Khameneh HJ et al (2017) The Syk-NFAT-IL-2 pathway in dendritic cells is required for optimal sterile immunity elicited by alum adjuvants. J Immunol 198(1):196–204

    Article  CAS  PubMed  Google Scholar 

  48. Flach TL et al (2011) Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity. Nat Med 17(4):479–487

    Article  CAS  PubMed  Google Scholar 

  49. Kool M et al (2011) An unexpected role for uric acid as an inducer of T helper 2 cell immunity to inhaled antigens and inflammatory mediator of allergic asthma. Immunity 34(4):527–540

    Article  CAS  PubMed  Google Scholar 

  50. Marichal T et al (2011) DNA released from dying host cells mediates aluminum adjuvant activity. Nat Med 17(8):996–1002

    Article  CAS  PubMed  Google Scholar 

  51. Ghimire TR (2015) The mechanisms of action of vaccines containing aluminum adjuvants: an in vitro vs in vivo paradigm. SpringerPlus 4:181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Ulanova M et al (2001) The common vaccine adjuvant aluminum hydroxide up-regulates accessory properties of human monocytes via an interleukin-4-dependent mechanism. Infect Immun 69(2):1151–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rose WA 2nd et al (2015) IL-33 released by alum is responsible for early cytokine production and has adjuvant properties. Sci Rep 5:13146

    Article  CAS  PubMed  Google Scholar 

  54. Oleszycka E et al (2018) The vaccine adjuvant alum promotes IL-10 production that suppresses Th1 responses. Eur J Immunol 48(4):705–715

    Article  CAS  PubMed  Google Scholar 

  55. He Q et al (2000) Calcium phosphate nanoparticle adjuvant. Clin Diagn Lab Immunol 7(6):899–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Masson JD et al (2017) Calcium phosphate: a substitute for aluminum adjuvants? Expert Rev Vaccines 16(3):289–299

    Article  CAS  PubMed  Google Scholar 

  57. Sesardic D, Rijpkema S, Patel BP (2007) New adjuvants: EU regulatory developments. Expert Rev Vaccines 6(5):849–861

    Article  CAS  PubMed  Google Scholar 

  58. Gupta RK et al (1995) Adjuvant properties of aluminum and calcium compounds. In: Vaccine design. Springer, Berlin, pp 229–248

    Chapter  Google Scholar 

  59. Ginebra MP, Driessens FC, Planell JA (2004) Effect of the particle size on the micro and nanostructural features of a calcium phosphate cement: a kinetic analysis. Biomaterials 25(17):3453–3462

    Article  CAS  PubMed  Google Scholar 

  60. Relyveld EH (1977) Calcium phosphate gel for adsorbing vaccines. Google Patents

    Google Scholar 

  61. Jiang D et al (2004) Structure and adsorption properties of commercial calcium phosphate adjuvant. Vaccine 23(5):693–698

    Article  CAS  PubMed  Google Scholar 

  62. Hayashi M et al (2016) Optimization of physiological properties of hydroxyapatite as a vaccine adjuvant. Vaccine 34(3):306–312

    Article  CAS  PubMed  Google Scholar 

  63. Seeber SJ, White JL, Hem SL (1991) Predicting the adsorption of proteins by aluminium-containing adjuvants. Vaccine 9(3):201–203

    Article  CAS  PubMed  Google Scholar 

  64. Jones S et al (2014) Protein coated microcrystals formulated with model antigens and modified with calcium phosphate exhibit enhanced phagocytosis and immunogenicity. Vaccine 32(33):4234–4242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yang Y et al (2019) Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis 10(2):128

    Article  PubMed  PubMed Central  Google Scholar 

  66. Pazar B et al (2011) Basic calcium phosphate crystals induce monocyte/macrophage IL-1beta secretion through the NLRP3 inflammasome in vitro. J Immunol 186(4):2495–2502

    Article  CAS  PubMed  Google Scholar 

  67. Garçon N, Chomez P, Van Mechelen M (2007) GlaxoSmithKline Adjuvant Systems in vaccines: concepts, achievements and perspectives. Expert Rev Vaccines 6(5):723–739

    Article  PubMed  Google Scholar 

  68. Casella CR, Mitchell TC (2008) Putting endotoxin to work for us: monophosphoryl lipid A as a safe and effective vaccine adjuvant. Cell Mol Life Sci 65(20):3231–3240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ribi E et al (1979) Peptides as requirement for immunotherapy of the guinea-pig line-10 tumor with endotoxins. Cancer Immunol Immunother 7(1):43–58

    Article  Google Scholar 

  70. Didierlaurent AM et al (2009) AS04, an aluminum salt- and TLR4 agonist-based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity. J Immunol 183(10):6186–6197

    Article  CAS  PubMed  Google Scholar 

  71. Kundi M (2007) New hepatitis B vaccine formulated with an improved adjuvant system. Expert Rev Vaccines 6(2):133–140

    Article  CAS  PubMed  Google Scholar 

  72. Tong NK et al (2005) Immunogenicity and safety of an adjuvanted hepatitis B vaccine in pre-hemodialysis and hemodialysis patients. Kidney Int 68(5):2298–2303

    Article  CAS  PubMed  Google Scholar 

  73. Harper DM et al (2004) Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial. Lancet 364(9447):1757–1765

    Article  CAS  PubMed  Google Scholar 

  74. Harper DM et al (2006) Sustained efficacy up to 4·5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial. Lancet 367(9518):1247–1255

    Article  CAS  PubMed  Google Scholar 

  75. Gall S, et al (2007) Substantial impact on precancerous lesions and HPV infections through 5.5 years in women vaccinated with the HPV-16/18 L1 VLP AS04 candidate vaccine. In: AACR

    Google Scholar 

  76. O’Hagan DT, Wack A, Podda A (2007) MF59 is a safe and potent vaccine adjuvant for flu vaccines in humans: what did we learn during its development? Clin Pharmacol Ther 82(6):740–744

    Article  PubMed  CAS  Google Scholar 

  77. O’Hagan DT et al (2013) The history of MF59((R)) adjuvant: a phoenix that arose from the ashes. Expert Rev Vaccines 12(1):13–30

    Article  PubMed  CAS  Google Scholar 

  78. Ott G et al (2000) The adjuvant MF59: a 10-year perspective. Springer, Berlin, pp 211–228

    Book  Google Scholar 

  79. Opie EL, Freund J (1937) An experimental study of protective inoculation with heat killed tubercle bacilli. J Exp Med 66(6):761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Apostolico Jde S et al (2016) Adjuvants: classification, modus operandi, and licensing. J Immunol Res 2016:1459394

    PubMed  Google Scholar 

  81. Salk JE, Laurent AM (1952) The use of adjuvants in studies on influenza immunization. I. Measurements in monkeys of the dimensions of antigenicity of virus-mineral oil emulsions. J Exp Med 95(5):429–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shi S et al (2019) Vaccine adjuvants: understanding the structure and mechanism of adjuvanticity. Vaccine 37(24):3167–3178

    Article  CAS  PubMed  Google Scholar 

  83. Wu Y et al (2008) Phase 1 trial of malaria transmission blocking vaccine candidates Pfs25 and Pvs25 formulated with montanide ISA 51. PLoS One 3(7):e2636

    Article  PubMed  PubMed Central  Google Scholar 

  84. Aucouturier J et al (2002) Montanide ISA 720 and 51: a new generation of water in oil emulsions as adjuvants for human vaccines. Expert Rev Vaccines 1(1):111–118

    Article  CAS  PubMed  Google Scholar 

  85. van Doorn E et al (2016) Safety and tolerability evaluation of the use of Montanide ISA51 as vaccine adjuvant: a systematic review. Hum Vaccin Immunother 12(1):159–169

    Article  PubMed  Google Scholar 

  86. Saul A et al (2005) A human phase 1 vaccine clinical trial of the Plasmodium falciparum malaria vaccine candidate apical membrane antigen 1 in Montanide ISA720 adjuvant. Vaccine 23(23):3076–3083

    Article  CAS  PubMed  Google Scholar 

  87. El Sahly H (2010) MF59™; as a vaccine adjuvant: a review of safety and immunogenicity. Expert Rev Vaccines 9(10):1135–1141

    Article  PubMed  Google Scholar 

  88. Herbert W (1966) Antigenicity of soluble protein in the presence of high levels of antibody: a possible mode of action of the antigen adjuvants. Nature 210(5037):747–748

    Article  CAS  PubMed  Google Scholar 

  89. Awate S, Babiuk LA, Mutwiri G (2013) Mechanisms of action of adjuvants. Front Immunol 4:114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. O’Hagan DT et al (2012) The mechanism of action of MF59—an innately attractive adjuvant formulation. Vaccine 30(29):4341–4348

    Article  PubMed  CAS  Google Scholar 

  91. Vesikari T et al (2009) Enhanced immunogenicity of seasonal influenza vaccines in young children using MF59 adjuvant. Pediatr Infect Dis J 28(7):563–571

    Article  PubMed  Google Scholar 

  92. Puig-Barbera J et al (2007) Effectiveness of MF59-adjuvanted subunit influenza vaccine in preventing hospitalisations for cardiovascular disease, cerebrovascular disease and pneumonia in the elderly. Vaccine 25(42):7313–7321

    Article  CAS  PubMed  Google Scholar 

  93. Iob A et al (2005) Evidence of increased clinical protection of an MF59-adjuvant influenza vaccine compared to a non-adjuvant vaccine among elderly residents of long-term care facilities in Italy. Epidemiol Infect 133(4):687–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mannino S et al (2012) Effectiveness of adjuvanted influenza vaccination in elderly subjects in northern Italy. Am J Epidemiol 176(6):527–533

    Article  PubMed  PubMed Central  Google Scholar 

  95. Podda A, Del Giudice G (2003) MF59-adjuvanted vaccines: increased immunogenicity with an optimal safety profile. Expert Rev Vaccines 2(2):197–203

    Article  CAS  PubMed  Google Scholar 

  96. Corey L et al (1999) Recombinant glycoprotein vaccine for the prevention of genital HSV-2 infection: two randomized controlled trials. JAMA 282(4):331–340

    Article  CAS  PubMed  Google Scholar 

  97. Nitayaphan S et al (2000) A phase I/II trial of HIV SF2 gp120/MF59 vaccine in seronegative Thais. Vaccine 18(15):1448–1455

    Article  CAS  PubMed  Google Scholar 

  98. Heineman TC et al (1999) A randomized, controlled study in adults of the immunogenicity of a novel hepatitis B vaccine containing MF59 adjuvant. Vaccine 17(22):2769–2778

    Article  CAS  PubMed  Google Scholar 

  99. Garcon N, Vaughn DW, Didierlaurent AM (2012) Development and evaluation of AS03, an adjuvant system containing alpha-tocopherol and squalene in an oil-in-water emulsion. Expert Rev Vaccines 11(3):349–366

    Article  CAS  PubMed  Google Scholar 

  100. Morel S et al (2011) Adjuvant system AS03 containing alpha-tocopherol modulates innate immune response and leads to improved adaptive immunity. Vaccine 29(13):2461–2473

    Article  CAS  PubMed  Google Scholar 

  101. Jacob L et al (2015) Comparison of Pandemrix and Arepanrix, two pH1N1 AS03-adjuvanted vaccines differentially associated with narcolepsy development. Brain Behav Immun 47:44–57

    Article  CAS  PubMed  Google Scholar 

  102. Laupeze B et al (2019) Adjuvant systems for vaccines: 13years of post-licensure experience in diverse populations have progressed the way adjuvanted vaccine safety is investigated and understood. Vaccine 37(38):5670–5680

    Article  PubMed  Google Scholar 

  103. Carter NJ, Plosker GL (2008) Prepandemic influenza vaccine H5N1 (split virion, inactivated, adjuvanted) [Prepandrix™]. BioDrugs 22(5):279–292

    Article  CAS  PubMed  Google Scholar 

  104. Treanor JJ et al (2006) Safety and immunogenicity of an inactivated subvirion influenza A (H5N1) vaccine. N Engl J Med 354(13):1343–1351

    Article  CAS  PubMed  Google Scholar 

  105. Bresson J-L et al (2006) Safety and immunogenicity of an inactivated split-virion influenza A/Vietnam/1194/2004 (H5N1) vaccine: phase I randomised trial. Lancet 367(9523):1657–1664

    Article  CAS  PubMed  Google Scholar 

  106. Hampson AW (2006) Ferrets and the challenges of H5N1 vaccine formulation. J Infect Dis 194(2):143–145

    Article  PubMed  Google Scholar 

  107. Langley JM et al (2011) Dose-sparing H5N1 A/Indonesia/05/2005 pre-pandemic influenza vaccine in adults and elderly adults: a phase III, placebo-controlled, randomized study. J Infect Dis 203(12):1729–1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tregoning JS, Russell RF, Kinnear E (2018) Adjuvanted influenza vaccines. Hum Vaccin Immunother 14(3):550–564

    Article  PubMed  PubMed Central  Google Scholar 

  109. Stoute J et al (1998) Long-term efficacy and immune responses following immunization with the RTS, S malaria vaccine. J infect Dis 178(4):1139–1144

    Article  CAS  PubMed  Google Scholar 

  110. Sun P et al (2003) Protective immunity induced with malaria vaccine, RTS,S, is linked to Plasmodium falciparum circumsporozoite protein-specific CD4+ and CD8+ T cells producing IFN-gamma. J Immunol 171(12):6961–6967

    Article  CAS  PubMed  Google Scholar 

  111. McElrath MJ, Haynes BF (2010) Induction of immunity to human immunodeficiency virus type-1 by vaccination. Immunity 33(4):542–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Li Y et al (2006) Characterization of antibody responses elicited by human immunodeficiency virus type 1 primary isolate trimeric and monomeric envelope glycoproteins in selected adjuvants. J Virol 80(3):1414–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Group, r.H.V.S (2005) Placebo-controlled phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection. J Infect Dis 191(5):654–665

    Article  Google Scholar 

  114. Bozzuto G, Molinari A (2015) Liposomes as nanomedical devices. Int J Nanomed 10:975–999

    Article  CAS  Google Scholar 

  115. Bangham A, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13(1):238–IN27

    Article  CAS  PubMed  Google Scholar 

  116. Sharma A, Sharma US (1997) Liposomes in drug delivery: progress and limitations. Int J Pharm 154(2):123–140

    Article  CAS  Google Scholar 

  117. Çağdaş M, Sezer AD, Bucak S (2014) Liposomes as potential drug carrier systems for drug delivery. In: Application of nanotechnology in drug delivery. IntechOpen, London

    Google Scholar 

  118. Akbarzadeh A et al (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8(1):102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Wang N, Chen M, Wang T (2019) Liposomes used as a vaccine adjuvant-delivery system: from basics to clinical immunization. J Control Release 303:130–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Euliss LE et al (2006) Imparting size, shape, and composition control of materials for nanomedicine. Chem Soc Rev 35(11):1095–1104

    Article  CAS  PubMed  Google Scholar 

  121. Gregoriadis G, Florence AT (1993) Liposomes in drug delivery. Drugs 45(1):15–28

    Article  CAS  PubMed  Google Scholar 

  122. Schwendener RA (2014) Liposomes as vaccine delivery systems: a review of the recent advances. Ther Adv Vaccines 2(6):159–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Felnerova D et al (2004) Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs. Curr Opin Biotechnol 15(6):518–529

    Article  CAS  PubMed  Google Scholar 

  124. Almeida J et al (1975) Formation of virosomes from influenza subunits and liposomes. Lancet 306(7941):899–901

    Article  Google Scholar 

  125. Gluck R, Burri KG, Metcalfe I (2005) Adjuvant and antigen delivery properties of virosomes. Curr Drug Deliv 2(4):395–400

    Article  CAS  PubMed  Google Scholar 

  126. Stegmann T et al (2010) Lipopeptide-adjuvanted respiratory syncytial virus virosomes: a safe and immunogenic non-replicating vaccine formulation. Vaccine 28(34):5543–5550

    Article  CAS  PubMed  Google Scholar 

  127. Datta SA, Rein A (2009) Preparation of recombinant HIV-1 gag protein and assembly of virus-like particles in vitro. Methods Mol Biol 485:197–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Correale P et al (2008) Anti-angiogenetic effects of immune-reconstituted influenza virosomes assembled with parathyroid hormone-related protein derived peptide vaccine. Cancer Lett 263(2):291–301

    Article  CAS  PubMed  Google Scholar 

  129. Wilschut J et al (2007) Preservation of influenza virosome structure and function during freeze-drying and storage. J Liposome Res 17(3-4):173–182

    Article  CAS  PubMed  Google Scholar 

  130. Moser C, Amacker M, Zurbriggen R (2011) Influenza virosomes as a vaccine adjuvant and carrier system. Expert Rev Vaccines 10(4):437–446

    Article  CAS  PubMed  Google Scholar 

  131. Mischler R, Metcalfe IC (2002) Inflexal® V a trivalent virosome subunit influenza vaccine: production. Vaccine 20:B17–B23

    Article  CAS  PubMed  Google Scholar 

  132. Kammer AR et al (2007) A new and versatile virosomal antigen delivery system to induce cellular and humoral immune responses. Vaccine 25(41):7065–7074

    Article  CAS  PubMed  Google Scholar 

  133. Khoshnejad M et al (2007) Modified influenza virosomes: recent advances and potential in gene delivery. Curr Med Chem 14(29):3152–3156

    Article  CAS  PubMed  Google Scholar 

  134. Mallick AI et al (2012) Vaccination with CpG-adjuvanted avian influenza virosomes promotes antiviral immune responses and reduces virus shedding in chickens. Viral Immunol 25(3):226–231

    CAS  PubMed  Google Scholar 

  135. Angel J et al (2007) Virosome-mediated delivery of tumor antigen to plasmacytoid dendritic cells. Vaccine 25(19):3913–3921

    Article  CAS  PubMed  Google Scholar 

  136. Bungener L et al (2005) Virosome-mediated delivery of protein antigens in vivo: efficient induction of class I MHC-restricted cytotoxic T lymphocyte activity. Vaccine 23(10):1232–1241

    Article  CAS  PubMed  Google Scholar 

  137. Wiedermann G et al (1990) Safety and immunogenicity of an inactivated hepatitis A candidate vaccine in healthy adult volunteers. Vaccine 8(6):581–584

    Article  CAS  PubMed  Google Scholar 

  138. Bovier PA (2008) Epaxal®: a virosomal vaccine to prevent hepatitis A infection. Expert Rev Vaccines 7(8):1141–1150

    Article  CAS  PubMed  Google Scholar 

  139. Bovier PA et al (2010) Predicted 30-year protection after vaccination with an aluminum-free virosomal hepatitis A vaccine. J Med Virol 82(10):1629–1634

    Article  PubMed  Google Scholar 

  140. Genton B et al (2006) Hepatitis A vaccines and the elderly. Travel Med Infect Dis 4(6):303–312

    Article  PubMed  Google Scholar 

  141. D’Acremont V, Herzog C, Genton B (2006) Immunogenicity and safety of a virosomal hepatitis A vaccine (Epaxal®) in the elderly. J Travel Med 13(2):78–83

    Article  PubMed  Google Scholar 

  142. Usonis V et al (2003) Antibody titres after primary and booster vaccination of infants and young children with a virosomal hepatitis A vaccine (Epaxal®). Vaccine 21(31):4588–4592

    Article  CAS  PubMed  Google Scholar 

  143. Dagan R et al (2000) Immunization against hepatitis A in the first year of life: priming despite the presence of maternal antibody. Pediatr Infect Dis J 19(11):1045–1052

    Article  CAS  PubMed  Google Scholar 

  144. Herzog C et al (2009) Eleven years of Inflexal V-a virosomal adjuvanted influenza vaccine. Vaccine 27(33):4381–4387

    Article  CAS  PubMed  Google Scholar 

  145. Kunzi V et al (2009) Safe vaccination of children with a virosomal adjuvanted influenza vaccine. Vaccine 27(8):1261–1265

    Article  CAS  PubMed  Google Scholar 

  146. Boon AC et al (2002) Influenza A virus specific T cell immunity in humans during aging. Virology 299(1):100–108

    Article  CAS  PubMed  Google Scholar 

  147. de Bruijn IA et al (2004) Virosomal influenza vaccine: a safe and effective influenza vaccine with high efficacy in elderly and subjects with low pre-vaccination antibody titers. Virus Res 103(1-2):139–145

    Article  PubMed  CAS  Google Scholar 

  148. de Bruijn IA et al (2005) Clinical experience with inactivated, virosomal influenza vaccine. Vaccine 23(Suppl 1):S39–S49

    Article  PubMed  CAS  Google Scholar 

  149. Amendola A et al (2001) Influenza vaccination of HIV-1-positive and HIV-1-negative former intravenous drug users. J Med Virol 65(4):644–648

    Article  CAS  PubMed  Google Scholar 

  150. Gaeta GB et al (2002) Immunogenicity and safety of an adjuvanted influenza vaccine in patients with decompensated cirrhosis. Vaccine 20:B33–B35

    Article  PubMed  Google Scholar 

  151. Glück R (2002) Intranasal immunization against influenza. J Aerosol Med 15(2):221–228

    Article  PubMed  Google Scholar 

  152. Mutsch M et al (2004) Use of the inactivated intranasal influenza vaccine and the risk of Bell’s palsy in Switzerland. N Engl J Med 350(9):896–903

    Article  CAS  PubMed  Google Scholar 

  153. Zhu D, Tuo W (2016) QS-21: a potent vaccine adjuvant. Nat Prod Chem Res 3(4):e113

    PubMed  Google Scholar 

  154. Vandepapeliere P (2018) Vaccine compositions comprising a saponin adjuvant. Google Patents

    Google Scholar 

  155. Kensil CR, Kammer R (1998) QS-21: a water-soluble triterpene glycoside adjuvant. Expert Opin Investig Drugs 7(9):1475–1482

    Article  CAS  PubMed  Google Scholar 

  156. Garcon N, Van Mechelen M (2011) Recent clinical experience with vaccines using MPL- and QS-21-containing adjuvant systems. Expert Rev Vaccines 10(4):471–486

    Article  PubMed  CAS  Google Scholar 

  157. Song X, Hu S (2009) Adjuvant activities of saponins from traditional Chinese medicinal herbs. Vaccine 27(36):4883–4890

    Article  CAS  PubMed  Google Scholar 

  158. Singh M, O'Hagan DT (2003) Recent advances in veterinary vaccine adjuvants. Int J Parasitol 33(5-6):469–478

    Article  CAS  PubMed  Google Scholar 

  159. Sun HX, Xie Y, Ye YP (2009) Advances in saponin-based adjuvants. Vaccine 27(12):1787–1796

    Article  CAS  PubMed  Google Scholar 

  160. Liu G et al (2002) QS-21 structure/function studies: effect of acylation on adjuvant activity. Vaccine 20(21-22):2808–2815

    Article  CAS  PubMed  Google Scholar 

  161. Dendouga N et al (2012) Cell-mediated immune responses to a varicella-zoster virus glycoprotein E vaccine using both a TLR agonist and QS21 in mice. Vaccine 30(20):3126–3135

    Article  CAS  PubMed  Google Scholar 

  162. Vandepapeliere P et al (2008) Vaccine adjuvant systems containing monophosphoryl lipid A and QS21 induce strong and persistent humoral and T cell responses against hepatitis B surface antigen in healthy adult volunteers. Vaccine 26(10):1375–1386

    Article  CAS  PubMed  Google Scholar 

  163. Didierlaurent AM et al (2017) Adjuvant system AS01: helping to overcome the challenges of modern vaccines. Expert Rev Vaccines 16(1):55–63

    Article  CAS  PubMed  Google Scholar 

  164. Stewart VA et al (2006) Pre-clinical evaluation of new adjuvant formulations to improve the immunogenicity of the malaria vaccine RTS,S/AS02A. Vaccine 24(42-43):6483–6492

    Article  CAS  PubMed  Google Scholar 

  165. RTS,S Clinical Trials Partnership (2015) Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet 386(9988):31–45

    Article  CAS  Google Scholar 

  166. Pichyangkul S et al (2004) Pre-clinical evaluation of the malaria vaccine candidate P. falciparum MSP1(42) formulated with novel adjuvants or with alum. Vaccine 22(29–30):3831–3840

    Article  CAS  PubMed  Google Scholar 

  167. Keating GM (2016) Shingles (Herpes Zoster) vaccine (zostavax((R))): a review in the prevention of herpes zoster and postherpetic neuralgia. BioDrugs 30(3):243–254

    Article  CAS  PubMed  Google Scholar 

  168. Lecrenier N et al (2018) Development of adjuvanted recombinant zoster vaccine and its implications for shingles prevention. Expert Rev Vaccines 17(7):619–634

    Article  CAS  PubMed  Google Scholar 

  169. Levin MJ, Oxman MN, Zhang JH, Johnson GR, Stanley H, Hayward AR, ... Weinberg A (2008) Varicellazoster virus–specific immune responses in elderly recipients of a herpes zoster vaccine. J Infect Dis 197(6):825–835

    Google Scholar 

  170. Cunningham AL et al (2018) Immune responses to a recombinant glycoprotein E herpes zoster vaccine in adults aged 50 years or older. J Infect Dis 217(11):1750–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Lal H, Zahaf T, Heineman TC (2013) Safety and immunogenicity of an AS01-adjuvanted varicella zoster virus subunit candidate vaccine (HZ/su): a phase-I, open-label study in Japanese adults. Hum Vaccin Immunother 9(7):1425–1429

    Article  PubMed  PubMed Central  Google Scholar 

  172. Chackerian B (2007) Virus-like particles: flexible platforms for vaccine development. Expert Rev Vaccines 6(3):381–390

    Article  CAS  PubMed  Google Scholar 

  173. Rohovie MJ, Nagasawa M, Swartz JR (2017) Virus-like particles: next-generation nanoparticles for targeted therapeutic delivery. Bioeng Transl Med 2(1):43–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Zhao Q et al (2013) Virus-like particle-based human vaccines: quality assessment based on structural and functional properties. Trends Biotechnol 31(11):654–663

    Article  PubMed  CAS  Google Scholar 

  175. Kushnir N, Streatfield SJ, Yusibov V (2012) Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine 31(1):58–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Bachmann MF, Zinkernagel RM (1997) Neutralizing antiviral B cell responses. Annu Rev Immunol 15(1):235–270

    Article  CAS  PubMed  Google Scholar 

  177. Fifis T et al (2004) Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J Immunol 173(5):3148–3154

    Article  CAS  PubMed  Google Scholar 

  178. Roldao A et al (2010) Virus-like particles in vaccine development. Expert Rev Vaccines 9(10):1149–1176

    Article  CAS  PubMed  Google Scholar 

  179. Cimica V, Galarza JM (2017) Adjuvant formulations for virus-like particle (VLP) based vaccines. Clin Immunol 183:99–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. De Gregorio E, Caproni E, Ulmer JB (2013) Vaccine adjuvants: mode of action. Front Immunol 4:214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Hussein WM et al (2014) Toll-like receptor agonists: a patent review (2011-2013). Expert Opin Ther Pat 24(4):453–470

    Article  CAS  PubMed  Google Scholar 

  182. Bode C et al (2011) CpG DNA as a vaccine adjuvant. Expert Rev Vaccines 10(4):499–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Vollmer J, Krieg AM (2009) Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv Drug Deliv Rev 61(3):195–204

    Article  CAS  PubMed  Google Scholar 

  184. Krieg AM et al (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374(6522):546–549

    Article  CAS  PubMed  Google Scholar 

  185. Krieg AM (2002) CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 20(1):709–760

    Article  CAS  PubMed  Google Scholar 

  186. Lipford GB et al (2000) CpG-DNA-mediated transient lymphadenopathy is associated with a state of Th1 predisposition to antigen-driven responses. J Immunol 165(3):1228–1235

    Article  CAS  PubMed  Google Scholar 

  187. Klinman DM (2004) Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat Rev Immunol 4(4):249–258

    Article  CAS  PubMed  Google Scholar 

  188. Heyward WL et al (2013) Immunogenicity and safety of an investigational hepatitis B vaccine with a Toll-like receptor 9 agonist adjuvant (HBsAg-1018) compared to a licensed hepatitis B vaccine in healthy adults 40-70 years of age. Vaccine 31(46):5300–5305

    Article  CAS  PubMed  Google Scholar 

  189. Jilg W, Schmidt M, Deinhardt F (1988) Persistence of specific antibodies after hepatitis B vaccination. J Hepatol 6(2):201–207

    Article  CAS  PubMed  Google Scholar 

  190. Halperin SA et al (2006) Comparison of the safety and immunogenicity of hepatitis B virus surface antigen co-administered with an immunostimulatory phosphorothioate oligonucleotide and a licensed hepatitis B vaccine in healthy young adults. Vaccine 24(1):20–26

    Article  CAS  PubMed  Google Scholar 

  191. Janssen JM et al (2015) Immunogenicity of an investigational hepatitis B vaccine with a Toll-like receptor 9 agonist adjuvant (HBsAg-1018) compared with a licensed hepatitis B vaccine in subpopulations of healthy adults 18-70 years of age. Vaccine 33(31):3614–3618

    Article  CAS  PubMed  Google Scholar 

  192. Janssen RS et al (2013) Immunogenicity and safety of an investigational hepatitis B vaccine with a toll-like receptor 9 agonist adjuvant (HBsAg-1018) compared with a licensed hepatitis B vaccine in patients with chronic kidney disease. Vaccine 31(46):5306–5313

    Article  CAS  PubMed  Google Scholar 

  193. Janssen JM et al (2015) Immunogenicity and safety of an investigational hepatitis B vaccine with a Toll-like receptor 9 agonist adjuvant (HBsAg-1018) compared with a licensed hepatitis B vaccine in patients with chronic kidney disease and type 2 diabetes mellitus. Vaccine 33(7):833–837

    Article  CAS  PubMed  Google Scholar 

  194. DeFrancesco L (2008) Dynavax trial halted. Nat Biotechnol 26(5):484

    Article  CAS  PubMed  Google Scholar 

  195. Pearse MJ, Drane D (2005) ISCOMATRIX adjuvant for antigen delivery. Adv Drug Deliv Rev 57(3):465–474

    Article  CAS  PubMed  Google Scholar 

  196. Sanders MT et al (2005) ISCOM-based vaccines: the second decade. Immunol Cell Biol 83(2):119–128

    Article  CAS  PubMed  Google Scholar 

  197. Sun HX, Xie Y, Ye YP (2009) ISCOMs and ISCOMATRIX. Vaccine 27(33):4388–4401

    Article  CAS  PubMed  Google Scholar 

  198. Madhun AS et al (2009) Intramuscular Matrix-M-adjuvanted virosomal H5N1 vaccine induces high frequencies of multifunctional Th1 CD4+ cells and strong antibody responses in mice. Vaccine 27(52):7367–7376

    Article  CAS  PubMed  Google Scholar 

  199. Bengtsson KL (2013) Matrix M adjuvant technology. In: Novel immune potentiators and delivery technologies for next generation vaccines. Springer, Berlin, pp 309–320

    Chapter  Google Scholar 

  200. Cooper CL et al (2004) Safety and immunogenicity of CPG 7909 injection as an adjuvant to Fluarix influenza vaccine. Vaccine 22(23-24):3136–3143

    Article  CAS  PubMed  Google Scholar 

  201. Cooper C et al (2004) CpG 7909, an immunostimulatory TLR9 agonist oligodeoxynucleotide, as adjuvant to Engerix-B® HBV vaccine in healthy adults: a double-blind phase I/II study. J Clin Immunol 24(6):693–701

    Article  CAS  PubMed  Google Scholar 

  202. Shirota H, Klinman DM (2017) CpG oligodeoxynucleotides as adjuvants for clinical use. In: Immunopotentiators in modern vaccines. Elsevier, Amsterdam, pp 163–198

    Chapter  Google Scholar 

  203. Fife KH et al (2008) Effect of resiquimod 0.01% gel on lesion healing and viral shedding when applied to genital herpes lesions. Antimicrob Agents Chemother 52(2):477–482

    Article  CAS  PubMed  Google Scholar 

  204. Cui B et al (2018) Flagellin as a vaccine adjuvant. Expert Rev Vaccines 17(4):335–349

    Article  CAS  PubMed  Google Scholar 

  205. Apostolico Jde S et al (2016) HIV envelope trimer specific immune response is influenced by different adjuvant formulations and heterologous prime-boost. PLoS One 11(1):e0145637

    Article  PubMed  CAS  Google Scholar 

  206. Henriques HR et al (2013) Targeting the non-structural protein 1 from dengue virus to a dendritic cell population confers protective immunity to lethal virus challenge. PLoS Negl Trop Dis 7(7):e2330

    Article  PubMed  PubMed Central  Google Scholar 

  207. Tewari K et al (2010) Poly(I:C) is an effective adjuvant for antibody and multi-functional CD4+ T cell responses to Plasmodium falciparum circumsporozoite protein (CSP) and alphaDEC-CSP in non human primates. Vaccine 28(45):7256–7266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Thompson K et al (1996) Results of a double-blind placebo-controlled study of the double-stranded RNA drug polyI: PolyC 12 U in the treatment of HIV infection. Eur J Clin Microbiol Infect Dis 15(7):580–587

    Article  CAS  PubMed  Google Scholar 

  209. Strayer DR et al (2012) A double-blind, placebo-controlled, randomized, clinical trial of the TLR-3 agonist rintatolimod in severe cases of chronic fatigue syndrome. PLoS One 7(3):e31334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Jasani B, Navabi H, Adams M (2009) Ampligen: a potential toll-like 3 receptor adjuvant for immunotherapy of cancer. Vaccine 27(25-26):3401–3404

    Article  CAS  PubMed  Google Scholar 

  211. Gowthaman U et al (2011) Promiscuous peptide of 16 kDa antigen linked to Pam2Cys protects against Mycobacterium tuberculosis by evoking enduring memory T-cell response. J Infect Dis 204(9):1328–1338

    Article  CAS  PubMed  Google Scholar 

  212. Moyle PM et al (2014) Site-specific incorporation of three Toll-like receptor 2 targeting adjuvants into semisynthetic, molecularly defined nanoparticles: application to group a streptococcal vaccines. Bioconjug Chem 25(5):965–978

    Article  CAS  PubMed  Google Scholar 

  213. Zhong W, Skwarczynski M, Toth I (2009) Lipid core peptide system for gene, drug, and vaccine delivery. Aust J Chem 62(9):956–967

    Article  CAS  Google Scholar 

  214. Zaman M et al (2014) Group A Streptococcal vaccine candidate: contribution of epitope to size, antigen presenting cell interaction and immunogenicity. Nanomedicine 9(17):2613–2624

    Article  CAS  PubMed  Google Scholar 

  215. Bartlett S et al (2020) Lipopeptide-based oral vaccine against hookworm infection. J Infect Dis 221(6):934–942

    Article  CAS  PubMed  Google Scholar 

  216. Zhong G et al (1993) Immunogenicity evaluation of a lipidic amino acid-based synthetic peptide vaccine for Chlamydia trachomatis. J Immunol 151(7):3728–3736

    CAS  PubMed  Google Scholar 

  217. Fuaad AAA et al (2015) The use of a conformational cathepsin D-derived epitope for vaccine development against Schistosoma mansoni. Bioorg Med Chem 23(6):1307–1312

    Article  CAS  Google Scholar 

  218. Carter D et al (2018) The adjuvant GLA-AF enhances human intradermal vaccine responses. Sci Adv 4(9):eaas9930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Arias MA et al (2012) Glucopyranosyl Lipid Adjuvant (GLA), a synthetic TLR4 agonist, promotes potent systemic and mucosal responses to intranasal immunization with HIVgp140. PLoS One 7(7):e41144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Reed SG et al (2018) Correlates of GLA family adjuvants’ activities. Semin Immunol 39:22–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Wang M et al (2014) Sulfated glucan can improve the immune efficacy of Newcastle disease vaccine in chicken. Int J Biol Macromol 70:193–198

    Article  CAS  PubMed  Google Scholar 

  222. Sun B et al (2018) Polysaccharides as vaccine adjuvants. Vaccine 36(35):5226–5234

    Article  CAS  PubMed  Google Scholar 

  223. Bacon J, Farmer V (1968) The presence of a predominantly beta (1-6) component in preparations of yeast glucan. Biochem J 110(3):34P

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Liang J et al (1998) Enhanced clearance of a multiple antibiotic resistant Staphylococcus aureus in rats treated with PGG-glucan is associated with increased leukocyte counts and increased neutrophil oxidative burst activity. Int J Immunopharmacol 20(11):595–614

    Article  CAS  PubMed  Google Scholar 

  225. Rasmussen LT, Seljelid R (1990) Dynamics of blood components and peritoneal fluid during treatment of murine E. coli sepsis with β-1, 3-D-polyglucose derivatives: I. Cells. Scand J Immunol 32(4):321–331

    Article  CAS  PubMed  Google Scholar 

  226. Vetvicka V (2011) Glucan-immunostimulant, adjuvant, potential drug. World J Clin Oncol 2(2):115–119

    Article  PubMed  PubMed Central  Google Scholar 

  227. Li P, Wang F (2015) Polysaccharides: candidates of promising vaccine adjuvants. Drug Discov Ther 9(2):88–93

    Article  CAS  PubMed  Google Scholar 

  228. Cooper PD, Petrovsky N (2011) Delta inulin: a novel, immunologically active, stable packing structure comprising beta-D-[2 -> 1] poly(fructo-furanosyl) alpha-D-glucose polymers. Glycobiology 21(5):595–606

    Article  CAS  PubMed  Google Scholar 

  229. Rodriguez-Del Rio E et al (2015) A gold glyco-nanoparticle carrying a Listeriolysin O peptide and formulated with Advax delta inulin adjuvant induces robust T-cell protection against listeria infection. Vaccine 33(12):1465–1473

    Article  CAS  PubMed  Google Scholar 

  230. Lobigs M et al (2010) An inactivated Vero cell-grown Japanese encephalitis vaccine formulated with Advax, a novel inulin-based adjuvant, induces protective neutralizing antibody against homologous and heterologous flaviviruses. J Gen Virol 91(Pt 6):1407–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Counoupas C et al (2017) Delta inulin-based adjuvants promote the generation of polyfunctional CD4(+) T cell responses and protection against Mycobacterium tuberculosis infection. Sci Rep 7(1):8582

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  232. Cristillo AD et al (2011) Induction of mucosal and systemic antibody and T-cell responses following prime-boost immunization with novel adjuvanted human immunodeficiency virus-1-vaccine formulations. J Gen Virol 92(Pt 1):128–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Saade F et al (2013) A novel hepatitis B vaccine containing Advax, a polysaccharide adjuvant derived from delta inulin, induces robust humoral and cellular immunity with minimal reactogenicity in preclinical testing. Vaccine 31(15):1999–2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Petrovsky N et al (2013) An inactivated cell culture Japanese encephalitis vaccine (JE-ADVAX) formulated with delta inulin adjuvant provides robust heterologous protection against West Nile encephalitis via cross-protective memory B cells and neutralizing antibody. J Virol 87(18):10324–10333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Dzierzbicka K, Wardowska A, Trzonkowski P (2011) Recent developments in the synthesis and biological activity of muramylpeptides. Curr Med Chem 18(16):2438–2451

    Article  CAS  PubMed  Google Scholar 

  236. Bahr GM et al (2003) Clinical and immunological effects of a 6 week immunotherapy cycle with murabutide in HIV-1 patients with unsuccessful long-term antiretroviral treatment. J Antimicrob Chemother 51(6):1377–1388

    Article  CAS  PubMed  Google Scholar 

  237. Giddam AK et al (2016) A semi-synthetic whole parasite vaccine designed to protect against blood stage malaria. Acta Biomater 44:295–303

    Article  CAS  PubMed  Google Scholar 

  238. Geijtenbeek TB et al (2003) Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med 197(1):7–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Geijtenbeek TB et al (2000) DC-SIGN, a dendritic cell–specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100(5):587–597

    Article  CAS  PubMed  Google Scholar 

  240. Irache JM et al (2008) Mannose-targeted systems for the delivery of therapeutics. Expert Opin Drug Deliv 5(6):703–724

    Article  CAS  PubMed  Google Scholar 

  241. Nevagi RJ, Skwarczynski M, Toth I (2019) Polymers for subunit vaccine delivery. Eur Polym J 114:397–410

    Article  CAS  Google Scholar 

  242. Moon SH et al (2015) Evaluation of hyaluronic acid-based combination adjuvant containing monophosphoryl lipid A and aluminum salt for hepatitis B vaccine. Vaccine 33(38):4762–4769

    Article  CAS  PubMed  Google Scholar 

  243. Fan Y et al (2015) Cationic liposome-hyaluronic acid hybrid nanoparticles for intranasal vaccination with subunit antigens. J Control Release 208:121–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Kong WH et al (2016) Self-adjuvanted hyaluronate—antigenic peptide conjugate for transdermal treatment of muscular dystrophy. Biomaterials 81:93–103

    Article  CAS  PubMed  Google Scholar 

  245. Bettencourt A, Almeida AJ (2012) Poly(methyl methacrylate) particulate carriers in drug delivery. J Microencapsul 29(4):353–367

    Article  CAS  PubMed  Google Scholar 

  246. Kreuter J, Speiser PP (1976) New adjuvants on a polymethylmethacrylate base. Infect Immun 13(1):204–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Voltan R et al (2007) Preparation and characterization of innovative protein-coated poly(methylmethacrylate) core-shell nanoparticles for vaccine purposes. Pharm Res 24(10):1870–1882

    Article  CAS  PubMed  Google Scholar 

  248. Skwarczynski M et al (2010) Polyacrylate dendrimer nanoparticles: a self-adjuvanting vaccine delivery system. Angew Chem Int Ed Engl 49(33):5742–5745

    Article  CAS  PubMed  Google Scholar 

  249. Liu TY et al (2013) Self-adjuvanting polymer-peptide conjugates as therapeutic vaccine candidates against cervical cancer. Biomacromolecules 14(8):2798–2806

    Article  CAS  PubMed  Google Scholar 

  250. Skwarczynski M, Toth I (2014) Recent advances in peptide-based subunit nanovaccines. Nanomedicine 9(17):2657–2669

    Article  CAS  PubMed  Google Scholar 

  251. Zhao G et al (2017) The application of self-assembled nanostructures in peptide-based subunit vaccine development. Eur Polym J 93:670–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Skwarczynski M, Toth I (2011) Peptide-based subunit nanovaccines. Curr Drug Deliv 8(3):282–289

    Article  CAS  PubMed  Google Scholar 

  253. Gutjahr A et al (2016) Biodegradable polymeric nanoparticles-based vaccine adjuvants for lymph nodes targeting. Vaccines (Basel) 4(4):34

    Article  CAS  Google Scholar 

  254. Lü J-M et al (2014) Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 9(4):325–341

    Article  Google Scholar 

  255. Marasini N et al (2016) Lipid core peptide/poly (lactic-co-glycolic acid) as a highly potent intranasal vaccine delivery system against Group A streptococcus. Int J Pharm 513(1–2):410–420

    Article  CAS  PubMed  Google Scholar 

  256. Taha MA, Singh SR, Dennis VA (2012) Biodegradable PLGA85/15 nanoparticles as a delivery vehicle for Chlamydia trachomatis recombinant MOMP-187 peptide. Nanotechnology 23(32):325101

    Article  PubMed  CAS  Google Scholar 

  257. Skwarczynski M et al (2020) Poly (amino acids) as a potent self-adjuvanting delivery system for peptide-based nanovaccines. Sci Adv 6(5):eaax2285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Akagi T et al (2007) Protein direct delivery to dendritic cells using nanoparticles based on amphiphilic poly(amino acid) derivatives. Biomaterials 28(23):3427–3436

    Article  CAS  PubMed  Google Scholar 

  259. Okamoto S et al (2012) Poly-gamma-glutamic acid nanoparticles and aluminum adjuvant used as an adjuvant with a single dose of Japanese encephalitis virus-like particles provide effective protection from Japanese encephalitis virus. Clin Vaccine Immunol 19(1):17–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Chowdhury MYE et al (2017) Mucosal vaccination of conserved sM2, HA2 and cholera toxin subunit A1 (CTA1) fusion protein with poly gamma-glutamate/chitosan nanoparticles (PC NPs) induces protection against divergent influenza subtypes. Vet Microbiol 201:240–251

    Article  CAS  PubMed  Google Scholar 

  261. Wang H et al (2018) Single dose HBsAg CS-gamma-PGA nanogels induce potent protective immune responses against HBV infection. Eur J Pharm Biopharm 124:82–88

    Article  CAS  PubMed  Google Scholar 

  262. Nevagi RJ et al (2018) Polyglutamic acid-trimethyl chitosan-based intranasal peptide nano-vaccine induces potent immune responses against group A streptococcus. Acta Biomater 80:278–287

    Article  CAS  PubMed  Google Scholar 

  263. Yoshikawa T et al (2008) Nanoparticles built by self-assembly of amphiphilic gamma-PGA can deliver antigens to antigen-presenting cells with high efficiency: a new tumor-vaccine carrier for eliciting effector T cells. Vaccine 26(10):1303–1313

    Article  CAS  PubMed  Google Scholar 

  264. Azuar A et al (2019) Cholic acid-based delivery system for vaccine candidates against Group A Streptococcus. ACS Med Chem Lett 10(9):1253–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Payne LG et al (1998) Poly [di (carboxylatophenoxy) phosphazene] (PCPP) is a potent immunoadjuvant for an influenza vaccine. Vaccine 16(1):92–98

    Article  CAS  PubMed  Google Scholar 

  266. Eng NF et al (2009) Polyphosphazenes enhance mucosal and systemic immune responses in mice immunized intranasally with influenza antigens. Open Vaccine J 2(1):134–143

    Article  CAS  Google Scholar 

  267. Eng NF et al (2010) The potential of polyphosphazenes for delivery of vaccine antigens and immunotherapeutic agents. Curr Drug Deliv 7(1):13–20

    Article  CAS  PubMed  Google Scholar 

  268. Pawar A et al (2015) An insight into cochleates, a potential drug delivery system. RSC Adv 5(99):81188–81202

    Article  CAS  Google Scholar 

  269. Kersten G, Hirschberg H (2004) Antigen delivery systems. Expert Rev Vaccines 3(4):453–462

    Article  CAS  PubMed  Google Scholar 

  270. Tovey MG, Lallemand C (2010) Adjuvant activity of cytokines. In: Vaccine adjuvants. Springer, Berlin, pp 287–309

    Chapter  Google Scholar 

  271. Kovacs JA et al (1996) Controlled trial of interleukin-2 infusions in patients infected with the human immunodeficiency virus. N Engl J Med 335(18):1350–1356

    Article  CAS  PubMed  Google Scholar 

  272. Osorio Y, Ghiasi H (2003) Comparison of adjuvant efficacy of herpes simplex virus type 1 recombinant viruses expressing TH1 and TH2 cytokine genes. J Virol 77(10):5774–5783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Henke A et al (2006) Co-expression of interleukin-2 by a bicistronic plasmid increases the efficacy of DNA immunization to prevent influenza virus infections. Intervirology 49(4):249–252

    Article  CAS  PubMed  Google Scholar 

  274. Rosenberg SA et al (1985) Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 313(23):1485–1492

    Article  CAS  PubMed  Google Scholar 

  275. Bolesta E et al (2006) Increased level and longevity of protective immune responses induced by DNA vaccine expressing the HIV-1 Env glycoprotein when combined with IL-21 and IL-15 gene delivery. J Immunol 177(1):177–191

    Article  CAS  PubMed  Google Scholar 

  276. Saikh KU et al (2008) Interleukin-15 increases vaccine efficacy through a mechanism linked to dendritic cell maturation and enhanced antibody titers. Clin Vaccine Immunol 15(1):131–137

    Article  CAS  PubMed  Google Scholar 

  277. Kwissa M et al (2003) Cytokine-facilitated priming of CD8+ T cell responses by DNA vaccination. J Mol Med (Berl) 81(2):91–101

    Article  CAS  Google Scholar 

  278. Kutzler MA et al (2005) Coimmunization with an optimized IL-15 plasmid results in enhanced function and longevity of CD8 T cells that are partially independent of CD4 T cell help. J Immunol 175(1):112–123

    Article  CAS  PubMed  Google Scholar 

  279. Wang X et al (2008) Interleukin-15 enhance DNA vaccine elicited mucosal and systemic immunity against foot and mouth disease virus. Vaccine 26(40):5135–5144

    Article  CAS  PubMed  Google Scholar 

  280. Toka FN et al (2005) Rescue of memory CD8+ T cell reactivity in peptide/TLR9 ligand immunization by codelivery of cytokines or CD40 ligation. Virology 331(1):151–158

    Article  CAS  PubMed  Google Scholar 

  281. Yoon HA et al (2006) Cytokine GM-CSF genetic adjuvant facilitates prophylactic DNA vaccine against pseudorabies virus through enhanced immune responses. Microbiol Immunol 50(2):83–92

    Article  CAS  PubMed  Google Scholar 

  282. Shakya AK et al (2016) Mucosal vaccine delivery: current state and a pediatric perspective. J Control Release 240:394–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Skwarczynski M, Toth I (2020) Non-invasive mucosal vaccine delivery: advantages, challenges and the future. Expert Opin Drug Deliv 17(4):435–437

    Article  PubMed  Google Scholar 

  284. Stratmann T (2015) Cholera toxin subunit B as adjuvant—an accelerator in protective immunity and a break in autoimmunity. Vaccines (Basel) 3(3):579–596

    Article  CAS  Google Scholar 

  285. Hou J et al (2014) Cholera toxin B subunit acts as a potent systemic adjuvant for HIV-1 DNA vaccination intramuscularly in mice. Hum Vaccin Immunother 10(5):1274–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Li J et al (2014) Intranasal immunization with influenza antigens conjugated with cholera toxin subunit B stimulates broad spectrum immunity against influenza viruses. Hum Vaccin Immunother 10(5):1211–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Li Y et al (2016) Antibody production and Th1-biased response induced by an epitope vaccine composed of cholera toxin B unit and Helicobacter pylori Lpp20 epitopes. Helicobacter 21(3):234–248

    Article  CAS  PubMed  Google Scholar 

  288. Olivera N et al (2014) Immunization with the recombinant Cholera toxin B fused to Fimbria 2 protein protects against Bordetella pertussis infection. Biomed Res Int 2014:421486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  289. Wiedinger K, Pinho D, Bitsaktsis C (2017) Utilization of cholera toxin B as a mucosal adjuvant elicits antibody-mediated protection against S. pneumoniae infection in mice. Ther Adv Vaccines 5(1):15–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. WH Organization (2010) Cholera vaccines: WHO position paper. Wkly Epidemiol Rec 85(13):117–128

    Google Scholar 

  291. Clements JD, Norton EB (2018) The Mucosal Vaccine Adjuvant LT(R192G/L211A) or dmLT. mSphere 3(4):e00215–e00218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Valli E et al (2019) LTA1 is a safe, intranasal enterotoxin-based adjuvant that improves vaccine protection against influenza in young, old and B-cell-depleted (muMT) mice. Sci Rep 9(1):15128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Pizza M et al (2000) LTK63 and LTR72, two mucosal adjuvants ready for clinical trials. Int J Med Microbiol 290(4–5):455–461

    Article  CAS  PubMed  Google Scholar 

  294. Dodane V, Vilivalam VD (1998) Pharmaceutical applications of chitosan. Pharm Sci Technol Today 1(6):246–253

    Article  CAS  Google Scholar 

  295. Malik A et al (2018) Novel application of trimethyl chitosan as an adjuvant in vaccine delivery. Int J Nanomed 13:7959–7970

    Article  CAS  Google Scholar 

  296. Mourya VK, Inamdar NN (2008) Chitosan-modifications and applications: opportunities galore. React Funct Polym 68(6):1013–1051

    Article  CAS  Google Scholar 

  297. Hagenaars N et al (2010) Role of trimethylated chitosan (TMC) in nasal residence time, local distribution and toxicity of an intranasal influenza vaccine. J Control Release 144(1):17–24

    Article  CAS  PubMed  Google Scholar 

  298. Amini Y et al (2017) Development of an effective delivery system for intranasal immunization against Mycobacterium tuberculosis ESAT-6 antigen. Artif Cells Nanomed Biotechnol 45(2):291–296

    Article  CAS  PubMed  Google Scholar 

  299. Abkar M et al (2017) Oral immunization of mice with Omp31-loaded N-trimethyl chitosan nanoparticles induces high protection against Brucella melitensis infection. Int J Nanomed 12:8769–8778

    Article  CAS  Google Scholar 

  300. Farhadian A, Dounighi NM, Avadi M (2015) Enteric trimethyl chitosan nanoparticles containing hepatitis B surface antigen for oral delivery. Hum Vaccin Immunother 11(12):2811–2818

    Article  PubMed  PubMed Central  Google Scholar 

  301. Schipper P et al (2017) Diphtheria toxoid and N-trimethyl chitosan layer-by-layer coated pH-sensitive microneedles induce potent immune responses upon dermal vaccination in mice. J Control Release 262:28–36

    Article  CAS  PubMed  Google Scholar 

  302. van der Maaden K et al (2015) Layer-by-layer assembly of inactivated poliovirus and N-trimethyl chitosan on pH-sensitive microneedles for dermal vaccination. Langmuir 31(31):8654–8660

    Article  PubMed  CAS  Google Scholar 

  303. Kim B et al (2002) Mucosal immune responses following oral immunization with rotavirus antigens encapsulated in alginate microspheres. J Control Release 85(1-3):191–202

    Article  CAS  PubMed  Google Scholar 

  304. Saraf S et al (2020) Lipopolysaccharide derived alginate coated Hepatitis B antigen loaded chitosan nanoparticles for oral mucosal immunization. Int J Biol Macromol 154:466–476

    Article  CAS  PubMed  Google Scholar 

  305. AbdelAllah NH et al (2020) Alginate-coated chitosan nanoparticles act as effective adjuvant for hepatitis A vaccine in mice. Int J Biol Macromol 152:904–912

    Article  CAS  PubMed  Google Scholar 

  306. Leonard M et al (2004) Hydrophobically modified alginate hydrogels as protein carriers with specific controlled release properties. J Control Release 98(3):395–405

    Article  CAS  PubMed  Google Scholar 

  307. Zhao L, Skwarczynski M, Toth I (2019) Polyelectrolyte-based platforms for the delivery of peptides and proteins. ACS Biomater Sci Eng 5(10):4937–4950

    Article  CAS  PubMed  Google Scholar 

  308. Zhao L et al (2020) Development of polyelectrolyte complexes for the delivery of peptide-based subunit vaccines against Group A Streptococcus. Nanomaterials (Basel) 10(5):823

    Article  CAS  Google Scholar 

  309. Yang J et al (2019) Cell-penetrating peptides: efficient vectors for vaccine delivery. Curr Drug Deliv 16(5):430–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Li X, Wang X, Ito A (2018) Tailoring inorganic nanoadjuvants towards next-generation vaccines. Chem Soc Rev 47(13):4954–4980

    Article  CAS  PubMed  Google Scholar 

  311. Aguilar JC, Rodriguez EG (2007) Vaccine adjuvants revisited. Vaccine 25(19):3752–3762

    Article  CAS  PubMed  Google Scholar 

  312. Lin LC et al (2018) Advances and opportunities in nanoparticle- and nanomaterial-based vaccines against bacterial infections. Adv Healthc Mater 7(13):e1701395

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Istvan Toth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Firdaus, F.Z., Skwarczynski, M., Toth, I. (2022). Developments in Vaccine Adjuvants. In: Thomas, S. (eds) Vaccine Design. Methods in Molecular Biology, vol 2412. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1892-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1892-9_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1891-2

  • Online ISBN: 978-1-0716-1892-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics