Skip to main content

Principles in Immunology for the Design and Development of Vaccines

  • Protocol
  • First Online:
Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2410))

Abstract

Vaccinology has come a long way from early, empirically developed vaccines to modern vaccines rationally designed and produced. Vaccines are meant to cooperate with the human immune system, the later largely unknown in the early years of vaccine development. In the recent years, a tremendous depth of knowledge has been accumulated in the field of immunology that has provided an opportunity to understand the mechanisms of action of the vaccine components. In parallel, our knowledge in microbiology, molecular biology, infectiology, epidemiology, and furthermore in bioinformatics has fostered our understanding of the interaction of microorganisms with the human immune system. Strategies engaged by pathogens strongly determine the targets of a vaccine, which should be formulated to stimulate potent and efficiently protective immune responses. The improved knowledge of immune response mechanisms has facilitated the development of new vaccines with the capacity to selectively address the key pathogenic mechanisms. The primary goal of a vaccine design might no longer be to mimic the pathogen but to identify the relevant processes of the pathogenic mechanisms to be effectively interrupted by a highly specific immune response, eventually surpassing natural limitations. Vaccines have become complex sets of components meant to orchestrate the fine-tuning of the immune processes leading to a lasting and specific immune memory. In addition to antigenic materials, which are comprised of the most critical immunogenic epitopes, adjuvant components are frequently added to induce a favorable immunological activation. Furthermore, for reasons of production and product stability preservatives, stabilizers, inactivators, antibiotics, or diluents could be present, but need to be evaluated. While on the one hand vaccine effectiveness is a primary goal, on the other hand side effects need to be excluded due to safety and tolerability. Further challenges in vaccinology include variability of the vaccinees, the variability of the pathogen, the population-based settings of vaccine application, and the process technology in vaccine production. Vaccine design has become more tailored and in turn has opened up the potential of extending its application to hitherto not accessible complex microbial pathogens plus providing new immunotherapies to tackle diseases such as cancer, Alzheimer’s disease, and autoimmune disease. This chapter gives an overview of the key considerations and processes involved in vaccine design and development. It also describes the basic principles of normal immune responses and in their function in defense of infectious agents by vaccination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Plotkin S (2014) History of vaccination. Proc Natl Acad Sci U S A 111(34):12283–12287. https://doi.org/10.1073/pnas.1400472111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Buck C (2003) Smallpox inoculation—should we credit Chinese medicine? Complement Ther Med 11(3):201–202. https://doi.org/10.1016/S0965-2299(03)00087-6

    Article  CAS  PubMed  Google Scholar 

  3. Rappuoli R, Bottomley MJ, D’Oro U, Finco O, De Gregorio E (2016) Reverse vaccinology 2.0: Human immunology instructs vaccine antigen design. J Exp Med 213(4):469–481. https://doi.org/10.1084/jem.20151960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Raeven RHM, van Riet E, Meiring HD, Metz B, Kersten GFA (2019) Systems vaccinology and big data in the vaccine development chain. Immunology 156(1):33–46. https://doi.org/10.1111/imm.13012

    Article  CAS  PubMed  Google Scholar 

  5. Wimmers F, Pulendran B (2020) Emerging technologies for systems vaccinology — multi-omics integration and single-cell (epi)genomic profiling. Curr Opin Immunol 65:57–64. https://doi.org/10.1016/j.coi.2020.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Del Giudice G, Rappuoli R, Didierlaurent AM (2018) Correlates of adjuvanticity: a review on adjuvants in licensed vaccines. Semin Immunol 39:14–21. https://doi.org/10.1016/j.smim.2018.05.001

    Article  CAS  PubMed  Google Scholar 

  7. Hussein IH (2015) Vaccines through centuries: major cornerstones of global health. Front Public Health 3:269. https://doi.org/10.3389/fpubh.2015.00269

    Article  Google Scholar 

  8. Minor PD (2015) Live attenuated vaccines: historical successes and current challenges. Virology 479–480:379–392. https://doi.org/10.1016/j.virol.2015.03.032

    Article  CAS  PubMed  Google Scholar 

  9. Orme IM (2015) Tuberculosis vaccine types and timings. Clin Vaccine Immunol 22(3):249–257. https://doi.org/10.1128/CVI.00718-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Villarreal R, Casale TB (2020) Commonly used adjuvant human vaccines: advantages and side effects. J Allergy Clin Immunol Pract S2213219820304025. https://doi.org/10.1016/j.jaip.2020.04.045

  11. Zepp F (2010) Principles of vaccine design—Lessons from nature. Vaccine 28:C14–C24. https://doi.org/10.1016/j.vaccine.2010.07.020

    Article  CAS  PubMed  Google Scholar 

  12. Poland GA, Ovsyannikova IG, Kennedy RB (2018) Personalized vaccinology: a review. Vaccine 36(36):5350–5357. https://doi.org/10.1016/j.vaccine.2017.07.062

    Article  CAS  PubMed  Google Scholar 

  13. Savage N (2019) Arming the immune system. Nature 575(7784):S44–S45. https://doi.org/10.1038/d41586-019-03636-8

    Article  CAS  PubMed  Google Scholar 

  14. Gasteiger G, D’Osualdo A, Schubert DA, Weber A, Bruscia EM, Hartl D (2017) Cellular innate immunity: an old game with new players. J Innate Immun 9(2):111–125. https://doi.org/10.1159/000453397

    Article  CAS  PubMed  Google Scholar 

  15. Netea MG, Schlitzer A, Placek K, Joosten LAB, Schultze JL (2019) Innate and adaptive immune memory: an evolutionary continuum in the host’s response to pathogens. Cell Host Microb 25(1):13–26. https://doi.org/10.1016/j.chom.2018.12.006

    Article  CAS  Google Scholar 

  16. Placek K, Schultze JL, Netea MG (2019) Immune memory characteristics of innate lymphoid cells. Curr Opin Infect Dis 32(3):196–203. https://doi.org/10.1097/QCO.0000000000000540

    Article  CAS  PubMed  Google Scholar 

  17. Zheng C (2020) Protein dynamics in cytosolic DNA-sensing antiviral innate immune signaling pathways. Front Immunol 11:1255. https://doi.org/10.3389/fimmu.2020.01255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Uehata T, Takeuchi O (2020) RNA recognition and immunity—innate immune sensing and its posttranscriptional regulation mechanisms. Cells 9(7):1701. https://doi.org/10.3390/cells9071701

    Article  CAS  PubMed Central  Google Scholar 

  19. Kumar H, Kawai T, Akira S (2011) Pathogen recognition by the innate immune system. Int Rev Immunol 30(1):16–34. https://doi.org/10.3109/08830185.2010.529976

    Article  CAS  PubMed  Google Scholar 

  20. Raymond SL (2017) Microbial recognition and danger signals in sepsis and trauma. Biochim Biophys Acta Mol Basis Dis 1863(10):2564–2573. https://doi.org/10.1016/j.bbadis.2017.01.013

    Article  CAS  PubMed  Google Scholar 

  21. Schmidt C, Schneble N, Wetzker R (2014) The fifth dimension of innate immunity. J Cell Commun Signal 8(4):363–367. https://doi.org/10.1007/s12079-014-0246-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Włodarczyk M, Druszczyńska M, Fol M (2019) Trained innate immunity not always amicable. IJMS 20(10):2565. https://doi.org/10.3390/ijms20102565

    Article  CAS  PubMed Central  Google Scholar 

  23. Riera Romo M, Pérez-Martínez D, Castillo Ferrer C (2016) Innate immunity in vertebrates: an overview. Immunology 148(2):125–139. https://doi.org/10.1111/imm.12597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Carroll MC, Isenman DE (2012) Regulation of humoral immunity by complement. Immunity 37(2):199–207. https://doi.org/10.1016/j.immuni.2012.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sánchez-Ramón S, Conejero L, Netea MG, Sancho D, Palomares Ó, Subiza JL (2018) Trained immunity-based vaccines: a new paradigm for the development of broad-spectrum anti-infectious formulations. Front Immunol 9:2936. https://doi.org/10.3389/fimmu.2018.02936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Collin M, Ginhoux F (2019) Human dendritic cells. Semin Cell Dev Biol 86:1–2. https://doi.org/10.1016/j.semcdb.2018.04.015

    Article  PubMed  Google Scholar 

  27. Bieber K, Autenrieth SE (2020) Dendritic cell development in infection. Mol Immunol 121:111–117. https://doi.org/10.1016/j.molimm.2020.02.015

    Article  CAS  PubMed  Google Scholar 

  28. Arstila TP (1999) A direct estimate of the human T cell receptor diversity. Science 286(5441):958–961. https://doi.org/10.1126/science.286.5441.958

    Article  CAS  PubMed  Google Scholar 

  29. Miles JJ, Douek DC, Price DA (2011) Bias in the αβ T-cell repertoire: implications for disease pathogenesis and vaccination. Immunol Cell Biol 89(3):375–387. https://doi.org/10.1038/icb.2010.139

    Article  CAS  PubMed  Google Scholar 

  30. KĂĽnzli M (2020) Long-lived T follicular helper cells retain plasticity and help sustain humoral immunity. Sci Immunol 5(45):eaay5552. https://doi.org/10.1126/sciimmunol.aay5552

    Article  PubMed  Google Scholar 

  31. Jameson SC, Masopust D (2018) Understanding subset diversity in T cell memory. Immunity 48(2):214–226. https://doi.org/10.1016/j.immuni.2018.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Akkaya M, Kwak K, Pierce SK (2020) B cell memory: building two walls of protection against pathogens. Nat Rev Immunol 20(4):229–238. https://doi.org/10.1038/s41577-019-0244-2

    Article  CAS  PubMed  Google Scholar 

  33. Eibel H, Kraus H, Sic H, Kienzler A-K, Rizzi M (2014) B cell biology: an overview. Curr Allergy Asthma Rep 14(5):434. https://doi.org/10.1007/s11882-014-0434-8

    Article  CAS  PubMed  Google Scholar 

  34. Inoue T, Moran I, Shinnakasu R, Phan TG, Kurosaki T (2018) Generation of memory B cells and their reactivation. Immunol Rev 283(1):138–149. https://doi.org/10.1111/imr.12640

    Article  CAS  PubMed  Google Scholar 

  35. Gray JI, Westerhof LM, MacLeod MKL (2018) The roles of resident, central and effector memory CD4 T-cells in protective immunity following infection or vaccination. Immunology 154(4):574–581. https://doi.org/10.1111/imm.12929

    Article  CAS  PubMed Central  Google Scholar 

  36. Davis ASW (2019) The human tissue-resident CCR5+ T cell compartment maintains protective and functional properties during inflammation. Sci Transl Med 11(521):eaaw8718. https://doi.org/10.1126/scitranslmed.aaw8718

    Article  CAS  PubMed Central  Google Scholar 

  37. Morrot A (2017) Human stem memory T cells (TSCM) as critical players in the long-term persistence of immune responses. Ann Transl Med 5(5):120. https://doi.org/10.21037/atm.2017.02.28

    Article  PubMed  PubMed Central  Google Scholar 

  38. Schumacher TN, Scheper W, Kvistborg P (2019) Cancer neoantigens. Annu Rev Immunol 37(1):173–200. https://doi.org/10.1146/annurev-immunol-042617-053402

    Article  CAS  PubMed  Google Scholar 

  39. Thakur A, Pedersen LE, Jungersen G (2012) Immune markers and correlates of protection for vaccine induced immune responses. Vaccine 30(33):4907–4920. https://doi.org/10.1016/j.vaccine.2012.05.049

    Article  CAS  PubMed  Google Scholar 

  40. Pennock ND, Kedl JD, Kedl RM (2016) T cell vaccinology: beyond the reflection of infectious responses. Trends Immunol 37(3):170–180. https://doi.org/10.1016/j.it.2016.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yost KE, Chang HY, Satpathy AT (2020) Tracking the immune response with single-cell genomics. Vaccine 38(28):4487–4490. https://doi.org/10.1016/j.vaccine.2019.11.035

    Article  PubMed  Google Scholar 

  42. Josefsberg JO, Buckland B (2012) Vaccine process technology. Biotechnol Bioeng 109(6):1443–1460. https://doi.org/10.1002/bit.24493

    Article  CAS  PubMed  Google Scholar 

  43. Vetter V, Denizer G, Friedland LR, Krishnan J, Shapiro M (2018) Understanding modern-day vaccines: what you need to know. Ann Med 50(2):110–120. https://doi.org/10.1080/07853890.2017.1407035

    Article  PubMed  Google Scholar 

  44. Nakayama T (2019) Causal relationship between immunological responses and adverse reactions following vaccination. Vaccine 37(2):366–371. https://doi.org/10.1016/j.vaccine.2018.11.045

    Article  CAS  PubMed  Google Scholar 

  45. Maertzdorf J, Kaufmann SHE, Weiner J (2015) Molecular signatures for vaccine development. Vaccine 33(40):5256–5261. https://doi.org/10.1016/j.vaccine.2015.03.075

    Article  CAS  PubMed  Google Scholar 

  46. Kocourkova A, Honegr J, Kuca K, Danova J (2017) Vaccine ingredients: components that influence vaccine efficacy. Mini Rev Med Chem 17(5):451–466. https://doi.org/10.2174/1389557516666160801103303

    Article  CAS  PubMed  Google Scholar 

  47. Wang YB, Wang LP, Li P (2018) Perspectives on novel vaccine development. Pol J Vet Sci 21(3):643–649. https://doi.org/10.24425/124302

    Article  CAS  PubMed  Google Scholar 

  48. Orlando R (2015) Prevention of hepatitis B virus infection: from the past to the future. Eur J Clin Microbiol Infect Dis 34(6):1059–1070. https://doi.org/10.1007/s10096-015-2341-x

    Article  CAS  PubMed  Google Scholar 

  49. Kapil P, Merkel TJ (2019) Pertussis vaccines and protective immunity. Curr Opin Immunol 59:72–78. https://doi.org/10.1016/j.coi.2019.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Meyer CU (2007) Cellular immunity in adolescents and adults following acellular pertussis vaccine administration. Clin Vaccine Immunol 14(3):288–292. https://doi.org/10.1128/CVI.00364-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mohsen MO, Zha L, Cabral-Miranda G, Bachmann MF (2017) Major findings and recent advances in virus–like particle (VLP)-based vaccines. Semin Immunol 34:123–132. https://doi.org/10.1016/j.smim.2017.08.014

    Article  CAS  PubMed  Google Scholar 

  52. Houser K, Subbarao K (2015) Influenza vaccines: challenges and solutions. Cell Host Microb 17(3):295–300. https://doi.org/10.1016/j.chom.2015.02.012

    Article  CAS  Google Scholar 

  53. Huijts SM, Coenjaerts FEJ, Bolkenbaas M, van Werkhoven CH, Grobbee DE, Bonten MJM (2018) The impact of 13-valent pneumococcal conjugate vaccination on virus-associated community-acquired pneumonia in elderly. Clin Microbiol Infection 24(7):764–770. https://doi.org/10.1016/j.cmi.2017.10.006

    Article  CAS  Google Scholar 

  54. Borrow R, Dagan R, Zepp F, Hallander H, Poolman J (2011) Glycoconjugate vaccines and immune interactions, and implications for vaccination schedules. Expert Rev Vaccines 10(11):1621–1631. https://doi.org/10.1586/erv.11.142

    Article  CAS  PubMed  Google Scholar 

  55. Kennedy RB, Ovsyannikova IG, Palese P, Poland GA (2020) Current challenges in vaccinology. Front Immunol 11:1181. https://doi.org/10.3389/fimmu.2020.01181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Van Den Ende C, Marano C, Van Ahee A, Bunge EM, De Moerlooze L (2017) The immunogenicity and safety of GSK’s recombinant hepatitis B vaccine in adults: a systematic review of 30 years of experience. Expert Rev Vaccines 16(8):811–832. https://doi.org/10.1080/14760584.2017.1338568

    Article  CAS  Google Scholar 

  57. Kiyotani K, Toyoshima Y, Nemoto K, Nakamura Y (2020) Bioinformatic prediction of potential T cell epitopes for SARS-Cov-2. J Hum Genet 65(7):569–575. https://doi.org/10.1038/s10038-020-0771-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kis Z, Shattock R, Shah N, Kontoravdi C (2018) Emerging technologies for low-cost, rapid vaccine manufacture. Biotechnol J 14:e1800376. https://doi.org/10.1002/biot.201800376

    Article  CAS  PubMed  Google Scholar 

  59. WHO (2020) Vaccines and diseases. https://www.who.int/immunization/diseases/en/

  60. Rauch S, Jasny E, Schmidt KE, Petsch B (2018) New vaccine technologies to combat outbreak situations. Front Immunol 9:1963. https://doi.org/10.3389/fimmu.2018.01963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Patel A, Kaufman HL, Disis ML (2017) Next generation approaches for tumor vaccination. Chin Clin Oncol 6(2):19. https://doi.org/10.21037/cco.2017.02.04

    Article  PubMed  Google Scholar 

  62. Scheiblhofer S, Thalhamer J, Weiss R (2018) DNA and mRNA vaccination against allergies. Pediatr Allergy Immunol 29(7):679–688. https://doi.org/10.1111/pai.12964

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred Zepp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Meyer, C.U., Zepp, F. (2022). Principles in Immunology for the Design and Development of Vaccines. In: Thomas, S. (eds) Vaccine Design. Methods in Molecular Biology, vol 2410. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1884-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1884-4_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1883-7

  • Online ISBN: 978-1-0716-1884-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics